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A family of exact similarity solutions for inviscid compressible ablative flows in slab
symmetry with nonlinear heat conduction is proposed for studying unsteadiness and
compressibility effects on the hydrodynamic stability of ablation fronts relevant to
inertial confinement fusion. Dynamical multi-domain Chebyshev spectral methods
are employed for computing both the similarity solution and its time-dependent
linear perturbations. This approach has been exploited to analyse the linear stability
properties of two self-similar ablative configurations subjected to direct laser illumin-
ation asymmetries. Linear perturbation temporal and reduced responses are analysed,
evidencing a maximum instability for illumination asymmetries of zero transverse
wavenumber as well as three distinct regimes of ablation-front distortion evolution,
and emphasizing the importance of the mean flow unsteadiness, compressibility and
stratification.

1. Introduction
When a semi-infinite initially cold material is suddenly exposed to an external

heat source, a supersonic heat wave first propagates into the undisturbed material
(Zel’dovich & Raizer 1967, vol. 2, chap. 10, § 8). As the heated material expands
and its mass increases, the wave slows down while the sound velocity of the heated
fluid increases. Owing to the increasing pressure behind the wave front, a shock
wave forms which at some point overruns the heat wave. The resulting configuration
of a fore-running shock wave followed by a heat front coinciding with the leading
edge of an expansion wave is referred to as a heat wave in the ‘deflagration regime’
(Sanmartı́n & Barrero 1978a) or ‘ablative heat wave’ (Pakula & Sigel 1985).

Ablative heat waves are central to laser-driven inertial confinement fusion (ICF)
where thermonuclear burn is expected to be achieved for a sufficiently symmetric
implosion of a spherical fuel pellet (e.g. see Nuckolls et al. 1972; Brueckner & Jorna
1974). Such pellets are typically made of a dense shell surrounding a lighter fuel core.
Their implosions under intense laser-created irradiation proceed in three stages. The
‘early shell-irradiation’ stage sees an ablative heat wave penetrating the outer part of
the dense shell until the fore-running shock wave interacts with the shell – fuel core
interface. During the subsequent ‘shell acceleration’ stage, the diverging rarefaction
wave issued from this interaction, and the sustained shell ablation set into an inwardly
accelerated motion the unablated part of the shell. In the third stage, the increasing
pressure of the compressed fuel core gradually decelerates the denser outer part of
the pellet until the start of thermonuclear reactions.
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The hydrodynamic instability of the shell ablative heat wave front – or ‘ablation
front’ – has been recognized early on as one of the key issues in the success of
ICF (Nuckolls et al. 1972; Brueckner & Jorna 1974) as it may lead to implosion
non-uniformities and possibly shell disruption, thus preventing the achievement
of thermonuclear reaction conditions. Works devoted to this problem have mostly
focused on the stability of strongly accelerated ablation fronts – i.e. for which the
Froude number based on the front acceleration, front scale length and relative
fluid velocity is small – as observed during the shell acceleration stage. The
corresponding front instability – termed ‘ablative Rayleigh–Taylor’ instability owing
to its acquaintance with the Rayleigh–Taylor’ instability (Rayleigh 1883; Taylor
1950) – has been the subject of numerous studies, carried out for idealized ablation
flows – i.e. considering a steady ablative flow of an unbounded fluid in a uniform and
constant inertial force field. Hence analytical models of the instability of discontinuous
ablation fronts have been proposed for incompressible (Bodner 1974) or low-Mach-
number (Kull & Anisimov 1986; Piriz, Sanz & Ibañez 1997; Piriz 2001a) ablation
flows. Smooth ablation layer profiles have also been considered under the low-Mach-
number flow approximation of Kull & Anisimov (1986), leading to most of the works
in the field (Kull 1989; Bychkov et al. 1991, 1994; Betti et al. 1995, 1996), or by
means of more consistent approaches (Takabe et al. 1985; Sanz 1996), although all
restricted to subsonic ablation fronts. Analysing compressibility effects has turned
out to be more arduous and has so far consisted in evaluating the influence of a
finite-Mach-number expansion flow using a discontinuous ablation front model (Piriz
2001b). Other important features of ICF ablative flows such as unsteadiness, non-
uniformity and confinement, owing to the additional complexity they introduce, have
traditionally been investigated by means of multidimensional numerical simulations
carried out with multiple-physics hydrodynamics codes. However, these simulations,
although incorporating all of the most relevant physical phenomena, suffer from the
flaws of the overly dissipative and dispersive numerical schemes used in such codes.

Similarity solutions (e.g. see Zel’dovich & Raizer 1967; Landau & Lifshitz 1987),
in addition to providing insights into complex hydrodynamic phenomena, through
scaling relationships, and enabling qualitative and parametric studies in realistic
configurations, have been profitably used in fluid mechanics as background states for
performing hydrodynamic stability analyses beyond the assumptions of uniform or
steady mean flows. Self-similar ablative heat waves have been known since Marshak
(1958) and have been investigated by several authors in the context of ICF (Anisimov
(1970); Brun et al. 1977; Barrero & Sanmartı́n 1977; Sanmartı́n & Barrero 1978a , b;
Reinicke & Meyer-ter-Vehn 1991; Sanz, Piriz & Tomasel 1992). Among the various
configurations which have been studied, a particular family is most relevant for
depicting the ablative heat wave during the early shell-irradiation stage (see Brun
et al. 1977) for which numerical simulations indicate that mean flow profiles are more
akin to self-similar than to steady flows (Velikovich et al. 1998). Hence such solutions
present a genuine interest when investigating the stability of ablative heat waves
found in ICF, including all the relevant effects of unsteadiness, compressibility and
stratification. However, fully exploiting these solutions requires being able to describe
both the self-similar mean flow and its perturbations in a physically consistent
manner – i.e. by rendering convective and diffusive phenomena of disparate and
varying scales. Part of the difficulty lies in the self-similar mean flows for which no
analytical solutions are known. Hence, despite these similarity solutions being known
for over four decades, their computation, at a level of accuracy compatible with a
stability analysis, has been demonstrated only very recently (Boudesocque-Dubois
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2000; Boudesocque-Dubois et al. 2001; Gauthier et al. 2005; Clarisse et al. 2006).
In effect, the simplified setting of the mean flow similarity has allowed the devising
of dynamical multidomain Chebyshev spectral methods for computing, respectively,
the mean flow (Gauthier et al. 2005) and its three-dimensional time-dependent linear
perturbations (Boudesocque-Dubois et al. 2003). Such a general and highly accurate
approach opens the way to temporal stability analyses, with unprecedented details and
accuracy, of a wide range of ICF ablative flows (see Boudesocque-Dubois et al. 2008).

As a first application, the linear responses to laser illumination asymmetries – or
‘laser imprinting’ – of two particular self-similar mean flows that should be achievable
with the future Laser Mégajoule laser facility (Holstein et al. 2000), have been
investigated (see Abéguilé et al. 2006). Our investigation aims at accurately rendering
and identifying the role played by unsteadiness, stratification and compressibility
in the early shell-irradiation ablative flow stability. This study follows a significant
number of investigations of laser imprinting which have been carried out over more
than a decade by means of numerical simulations, modelling or experiments.

When considering the direct illumination of an ICF pellet by laser beams, illumina-
tion asymmetries such as caused by beam non-uniformities, mispointing or imbalance,
may be detrimental to the achievement of high fusion yields (e.g. Brueckner & Jorna
1974). Such asymmetries induce, during the early stage of irradiation, an ablation
flow non-uniformity which will be amplified during the subsequent shell-acceleration
stage, leading eventually to shell disruption and pellet performance degradation. In
one of the early works on the subject, Emery et al. (1991) studied the impact of a
laser smoothing technique on the level of flow non-uniformities by means of two-
dimensional simulations. In particular, flow perturbations within the linear approxim-
ation regime were shown to induce a roughly linear time growth of areal mass perturb-
ations while the dominance of the perturbed fore-running shock wave was emphasized.

Ishizaki & Nishihara (1997) were the first to propose an analytical model of laser
imprinting by solving a linear wave equation for the supposedly uniform and adiabatic
flow between the leading shock wave and the ablation front. This model which
used Rankine–Hugoniot jump conditions at the shock front and Chapman–Jouguet
deflagration conditions at the ablation front, reproduced the areal mass perturbation
initial linear growth and subsequent saturation found in simulations (Nishihara
et al. 1998), and gave results in agreement with experiments. Velikovich et al. (1998)
introduced a similar model, but the ablation front boundary conditions were taken
to be those of a leaky piston with exponentially time-decaying boundary pressure
perturbation. The conjugated effects of the mass flux through the ablation front and of
the decaying ablation front pressure perturbation were analysed as being responsible
for the perturbation growth saturation which occurs for perturbation amplitudes
well within the linear approximation regime. However, these simple models failed to
describe the perturbation decaying oscillations observed in simulations conducted for
sufficiently large times (Velikovich et al. 1998).

By relating these oscillations to the stabilizing mechanisms known to be at work
in ablation fronts, Goncharov et al. (2000) went further into the modelling of laser
imprinting by using the discontinuous ablation front jump conditions of Piriz et al.
(1997) in place of the cruder ablation front boundary conditions previously used.
As a result, an asymptotic regime of exponentially damped front oscillations was
predicted for perturbation wavelengths smaller than the expanding heat-conducting
flow region.

The succession of areal mass perturbation growth, saturation and subsequent
damped oscillations found in simulations and described by this last model was later
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confirmed by detailed experimental results of Aglitskiy et al. (2002) and Metzler et al.
(2003).

Nevertheless, neglecting the mean flow unsteadiness had been pointed out by
Goncharov et al. (2000) as a major source of discrepancies with simulation data. For
this reason, Goncharov et al. (2006) attempted to alleviate this defect by introducing
a linear time dependence of the ablation front characteristic length which enters their
model.

Overcoming the low-Mach-number assumption and the neglect of the expanding
heat-conducting flow structure inherent in the discontinous ablation front model of
Piriz et al. (1997) is also a necessity since stratification and compressibility are thought
to be influential during the early shell-irradiation stage (Velikovich et al. 1998; Piriz
& Portugues 2003). This stage which is critical to ICF pellet implosions since it
sets initial conditions for the subsequent ablative Rayleigh–Taylor instability growth,
requires an accurate rendering of perturbed ablative flow evolutions (see Aglitskiy
et al. 2002; Metzler et al. 2003). Hence, despite improvements in the modelling of
laser imprinting, substantial progress in the accurate description and analysis of this
phenomenon for realistic ICF ablative flows is still required. In addition to answering
this need, the present paper aims at laying the groundwork for future temporal stability
analyses of ICF ablative flows beyond the sole scope of laser imprinting. Given
the complexity of the self-similar mean flow, the present laser imprinting analysis
of unsteady compressible ablative flows consists in a study of linear perturbation
response data. After introducing (§ 2) the self-similar solution family relevant to the
early shell-irradiation stage of an ICF pellet implosion, we detail (§ 3) the temporal
evolution equations and boundary conditions for the linear perturbation transverse
Fourier modes (§§ 3.1 and B.2.1), and exhibit a possible reduction of variables for the
linear perturbations (Appendix A) leading to reduced Fourier mode equations and
boundary conditions (§§ 3.2, A.3 and B.2.3). After some laser imprinting background
information (§ 4.1), the chosen self-similar mean flow (§ 4.2) and perturbation (§ 4.3)
configurations are detailed. Results are then given under the form of Fourier mode
temporal responses (§ 4.4) which are shown to present, under certain restrictions, the
characteristics of the linear perturbation variable reduction. Taking advantage of this
variable reduction, temporal response results are then exploited to furnish reduced
Fourier mode responses covering a wide range of the temporal and spectral variables
(§ 4.5) thus allowing us to firmly establish our findings. A simple illustration of a
possible practical application is also given by assessing the influence of some of the
mean flow ablation parameters on laser imprinting (§ 4.6). Finally, we discuss our
findings with respect to known results on the subject (§ 4.7).

2. One-dimensional self-similar ablative flows
Hydrodynamic instabilities in ICF ablative flows are classically investigated by

considering the motion of an inviscid heat-conducting fluid with a polytropic equation
of state,

p = R ρ T, E = Cv T with Cv = R/(γ − 1), (2.1)

and a nonlinear heat conductivity of the form

κ = κ0 (ρc/ρ)μ (T/Tc)
ν , κ0 > 0, μ � 0, ν > 0, (2.2)

where ρ, p, E, T denote, respectively, the fluid density, pressure, specific internal
energy, temperature; R is the gas constant, γ the fluid adiabatic exponent; κ0,
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μ, ν are fluid constants, and ρc, Tc are some reference density and temperature.
Particular examples of heat conductivity exponent values are (μ, ν) = (0, 5/2) for the
Spitzer-Härm electron heat conduction model (see Duderstadt & Moses 1982) and
(μ, ν) = (2, 13/2) in the case of the radiative heat conduction for the fully ionized gas
model of Kramers (see Zel’dovich & Raizer 1967). Adopting an Eulerian point of
view, the equations of motion are

∂tρ + ∇ · (ρv) = 0,

∂t (ρv) + ∇ · (ρv ⊗ v + pI) = 0,

∂t [ρ(v2/2 + E)] + ∇ ·[ρv(v2/2 + γ E) + ϕ] = I,

⎫⎪⎬⎪⎭ (2.3)

in a Cartesian coordinate system (x, y, z), with v (= vx ex + vy ey + vz ez) the fluid
particle velocity, ϕ the heat flux, of expression

ϕ = −κ∇T , (2.4)

and I an energy source term accounting for laser energy deposition if any.
Since Marshak (1958), similarity solutions of one-dimensional forms of (2.3), or

of their two-temperature counterparts in the case of plasmas, have been investigated
either by means of simulations of particular initial- and boundary-value problems
(IBVPs) (Anisimov 1970; Brun et al. 1977), either through asymptotic analysis
(Barrero & Sanmartı́n 1977; Sanmartı́n & Barrero 1978a , b) or numerical integration
(Reinicke & Meyer-ter-Vehn 1991) of similarity transformed equations. More recently,
benefiting from an unpublished work of 1983 by Saillard (see Abéguilé et al. 2006),
the authors and co-workers (Boudesocque-Dubois 2000; Boudesocque-Dubois et al.
2001; Gauthier et al. 2005; Abéguilé et al. 2006; Boudesocque-Dubois et al. 2008)
devised a numerical approach capable of computing self-similar ablative heat waves
for quasi-non-isothermal leading shock waves, with a level of accuracy compatible
with a hydrodynamic stability analysis. Particular examples of such solutions for
the ablation, by electron heat conduction, of semi-infinite slabs of gases in various
configurations could thus be obtained (see Abéguilé et al. 2006; Boudesocque-Dubois
et al. 2008).

These configurations correspond to the one-dimensional flow of a semi-infinite slab
of gas – initially at rest and of uniform finite density – resulting from applying
particular time-increasing pressure and heat flux laws to its external surface. Such a
flow – assumed here to be along the Cartesian coordinate x-axis – is conveniently
described by the equations of motion (2.3) in the absence of laser energy deposition,
i.e. for I = 0, written in terms of the Lagrangian coordinate m such that dm = ρ dx.
With the convention that q̄ identifies the physical quantity q relative to such a
one-dimensional flow (see table 5), the relevant equations come as

∂t (1/ρ̄ ) − ∂mv̄x = 0,

∂t v̄x + ∂mp̄ = 0,

∂t

(
v̄x

2/2 + Ē
)

+ ∂m (p̄v̄x + ϕ̄x) = 0 with ϕ̄x = −κ̄ ρ̄ ∂mT̄ ,

⎫⎪⎬⎪⎭ (2.5)

where all the quantities are taken along the particle trajectories ∂t x̄ = v̄x , i.e. are
functions of (m, t), while initial and boundary conditions are given by, respectively,

ρ̄ (m, 0) = ρI , v̄x(m, 0) = 0, T̄ (m, 0) = 0, m � 0, (2.6)

p̄(0, t) = p̄e(t) = p∗(t/t∗)
Ee

p̄ , ϕ̄x(0, t) = ϕ̄e(t) = ϕ∗(t/t∗)
Ee

ϕ̄ , t � 0, (2.7)



6 J.-M. Clarisse, C. Boudesocque-Dubois and S. Gauthier

with ρI the fluid initial uniform density; p∗, ϕ∗, t∗ some characteristic boundary
pressure, boundary heat flux and time; and Ee

p̄ , Ee
ϕ̄ are constants to be determined

from the similarity condition.

2.1. Dimensionless formulation

Taking full advantage of the generality of the self-similar representation is most
conveniently ensured through the use of a dimensionless formulation for the equations
of motion, here given by (2.1), (2.2), (2.4), (2.5). This formulation is chosen to rely
on the quantities ρI , R, κ0, and t∗, given that the reference density ρc may be simply
chosen to be ρI . By virtue of the Π-theorem (e.g. see Barenblatt 1979), the seven
parameters (ρI , R, γ , κ0, t∗, p∗, ϕ∗) lead us to retain the following three dimensionless
numbers

γ, Bp = p∗t∗R/κ0, Bϕ = ϕ∗
√

ρI (t∗R/κ0)3. (2.8)

Using the five parameters ρI , R, γ , κ0, t∗, system (2.1), (2.2), (2.4), (2.5) is then rewritten
in dimensionless form, with the convention that all the quantities are replaced by their
dimensionless equivalents while keeping their notation unchanged. Upon denoting for
any given physical quantity q , its reference value by qc, this transformation amounts
to the definitions

tc = t∗, ρc = ρI , xc = R−1/2 κ
1/2
0 t1/2

c ρ−1/2
c ,

vc = R−1/2 κ
1/2
0 t−1/2

c ρ−1/2
c , pc = R−1 κ0 t−1

c ,

Tc = R−2 κ0 t−1
c ρ−1

c , ϕc = R−3/2 κ
3/2
0 t−3/2

c ρ−1/2
c ,

⎫⎪⎬⎪⎭ (2.9)

with, in particular, the immediate consequence that the dimensionless form of the
equation of state (2.1) is

p = ρ T , E = T/(γ − 1). (2.10)

2.2. Self-similar formulation

The self-similar formulation of the dimensionless system derived from (2.1), (2.2),
(2.4), (2.5) is achieved, for ν �= 1, upon introducing the self-similar variable

ξ = mt−α, (2.11)

with the definition

α = (2ν − 1)/(2ν − 2), (2.12)

and the similarity laws for the dependent variables

ρ̄ (m, t) = Ḡ(ξ ), v̄x(m, t) = tα−1V̄ (ξ ),

T̄ (m, t) = t2(α−1)Θ̄ (ξ ), ϕ̄x(m, t) = t3(α−1)Φ̄ (ξ ),

}
(2.13)

see Brun et al. (1977), Boudesocque-Dubois et al. (2008) and Appendix (A). The
system of partial differential equations (2.5) reduces then to a one-dimensional system
of ODEs (Abéguilé et al. 2006), namely

dξ Y = F(ξ, Y ), (2.14)

for the unknown Y = (Ḡ, V̄ , Θ̄ , Φ̄ )�, where the components of the function F read

F1 = Ḡ
2
N/D, F2 = α ξ N/D, F3 = −Ḡ

μ−1
Θ̄

−ν
Φ̄ ,

F4 = [α ξF3 − 2(α − 1)Θ̄ ]/(γ − 1) − αξ ḠΘ̄N/D,

}
(2.15)
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with

N = (α − 1)V̄ + ḠF3, D = α2ξ 2 − Ḡ
2
Θ̄ , (2.16)

while the initial and boundary conditions (2.6) and (2.7) are, respectively, transformed
into the boundary conditions

Ḡ = 1, V̄ = 0, Θ̄ = 0 as ξ → +∞, (2.17)

P̄ = ḠΘ̄ = Bp, Φ̄ = Bϕ for ξ = 0, (2.18)

along with the time exponent expressions

Ee
p̄ = 2(α − 1), Ee

ϕ̄ = 3(α − 1), (2.19)

in (2.7). Any solution Y of (2.14) which satisfies (2.17) and (2.18) necessarily
includes the singularity D =0. This singularity, which corresponds to an isothermal
characteristic curve, say m/tα = ξs , of the (m, t)-plane, is circumvented by introducing,
as part of the solution, an isothermal shock wave at ξ = ξs . For the configurations
of ablative flows in the deflagration regime presently considered, such a shock
wave penetrates the cold quiescent fluid together with an infinitesimal fore-
running thermal wave (e.g. see Marshak 1958). For a shock-compressed fluid
region dominated by convection effects, as is the case in this paper, this wave
combination may be considered as a non-isothermal shock bounding the disturbed
fluid region (Marshak 1958) – the sole approximation conceded here. Hereinafter
the boundary conditions (2.17) are replaced by the Rankine–Hugoniot jump
relations (B 2), at ξ = ξs , for a non-isothermal shock wave with uniform upstream state
given by (2.17). These jump relations along with the boundary conditions of (2.18)
hence define a nonlinear eigenvalue problem for system (2.14). In the absence of any
known analytical solutions to this system, we must resort to numerical integration
techniques for obtaining solutions over a wide range of the boundary condition
parameters (Bp, Bϕ).

The numerical method we have devised (Gauthier et al. 2005; Boudesocque-
Dubois et al. 2008) comprises a shooting procedure based on finite-difference schemes
for obtaining a solution first guess, and a relaxation process coupled to a self-
adaptive multidomain Chebyshev collocation method for computing subsequent
approximations up to the desired accuracy. In practice, 9 significant digit results
are commonly achieved over the domain [0, ξs) for a 15 digit implementation of
the method. Less accurate results are obtained for the boundary values at ξ = ξs

in connection with the error made upon replacing there the wave structure by a
non-isothermal shock front (Boudesocque-Dubois et al. 2008). However, this non-
isothermal bounding shock-wave approximation which evidently restrains the variety
of configurations that may be handled by the present method, allows the treatment of
ablative flows relevant to ICF (Abéguilé et al. 2006). Although the question of whether
or not such similarity solutions are attractors has yet to be theoretically addressed,
examples of the self-similar character of converged numerical approximations to
the IBVP (2.5)–(2.7) have been shown in different instances (see Brun et al. 1977;
Boudesocque-Dubois & Clarisse 2003; Boudesocque-Dubois et al. 2008).

3. Linear perturbations
In fluid mechanics, the linear stability problem of a mean flow is classically

formulated in terms of perturbations which, without further assumption, are functions
of three space variables and time. Here, these perturbations are sought as solutions of
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an IBVP given by: (a) a linearized form of the three-dimensional Euler equations (2.3);
(b) linear perturbations of the boundary conditions satisfied by the mean flow under
study; and (c) initial conditions. In the present case (Boudesocque-Dubois 2000;
Boudesocque-Dubois et al. 2001; Abéguilé et al. 2006), an Eulerian description of the
perturbations in the (m, y, z)-coordinate system has been retained in formulating this
IBVP. This particular choice follows not only from the coordinate system used for the
one-dimensional solution, but also from the fact that a Lagrangian description of the
perturbations would further complicate the definition of initial conditions. Indeed, in
the case of a Lagrangian description, initial position perturbations would have to be
supplied in addition to the initial conditions required by an Eulerian description.

The system of equations satisfied by three-dimensional linear perturbations of
solutions to (2.3) is derived in the following manner. First, the change of variables
(x, y, z) → (m, y, z), with m defined as in § 2, is performed in (2.3) with the help of
the partial derivative transformations

∂x −→ ρ̄ ∂m, ∂t −→ ∂t − ρ̄ v̄x ∂m .

In this new formulation, all the flow quantities are then assumed to depend on
a perturbation parameter, say ε, such that ε = 0 corresponds to the mean flow,
i.e. q(m, y, z, t; ε)|ε = 0 ≡ q̄ (m, t) for any scalar quantity q . By defining the linear
perturbation of q to be the partial derivative

q (1)(m, y, z, t) =
∂q

∂ε
(m, y, z, t; ε)|ε=0 , (3.1)

the equations satisfied by ρ(1), v(1), E(1) are obtained formally by differentiating, with
respect to ε, the equations in the (m, y, z, t)-variables, considering m, y, z, t and ε to
be the independent variables. This definition corresponds to an Eulerian description
of the perturbations (e.g. see Ledoux & Walraven 1958, § 56) in the coordinate system
(m, y, z). The resulting system of linear perturbation equations then becomes

∂tρ
(1) + ρ̄

[
∂m

(
ρ̄ v(1)

x

)
+ ∂mv̄x ρ(1) + ∇⊥ · v

(1)
⊥

]
= 0, (3.2a)

∂t v
(1)
x + ρ̄∂mv̄x v(1)

x + ∂mp(1) − ∂mp̄ ρ(1)/ρ̄ = 0, (3.2b)

∂tv
(1)
⊥ + ∇⊥p(1)/ρ̄ = 0, (3.2c)

∂tE(1) + ρ̄∂mĒ v(1)
x + ρ̄ ∂mv̄x T (1) + p̄ ∂mv(1)

x

+ ∂mϕ(1)
x − ∂mϕ̄xρ

(1)/ρ̄ +
(
p̄∇⊥ · v

(1)
⊥ + ∇⊥ · ϕ

(1)
⊥

)
/ρ̄ = 0, (3.2d)

where ∇⊥. = (∂y., ∂z.)
�, and with the notation v

(1)
⊥ = v(1)

y ey+v(1)
z ez, ϕ

(1)
⊥ = ϕ(1)

y ey+ϕ(1)
z ez,

for, respectively, the transverse velocity field and heat flux linear perturbations (see
also table 5). These equations are supplemented by the expressions for the heat flux
linear perturbations, or

ϕ(1)
x = −ρ̄ κ̄ (∂mT (1) + ∂mT̄ [(1 − μ)ρ(1)/ρ̄ + νT (1)/T̄ ]), (3.3a)

ϕ
(1)
⊥ = −κ̄∇⊥T (1), (3.3b)

and the linearized form of the equation of state (2.10),

p(1) = ρ̄ T (1) + ρ(1) T̄ , E(1) = T (1)/(γ − 1). (3.4)

The above system of linear perturbation PDEs may be simplified upon introducing a
Helmholtz decomposition of the transverse velocity field v

(1)
⊥ . From this decomposition,

the irrotational part of v
(1)
⊥ is entirely determined by the transverse expansion ∇⊥ ·v(1)

⊥ ,
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which obeys the evolution equation

∂t

(
∇⊥ · v

(1)
⊥

)
+ ⊥p(1)/ρ̄ = 0 , (3.5)

while the remaining – solenoidal – part of v
(1)
⊥ is reduced to steady solid rotations

about the x-axis, with angular velocities stipulated by initial conditions. This latter
type of motion is of little interest in the present case and is discarded, hence
leading to the three-dimensional system of PDEs (3.2a), (3.2b), (3.5), (3.2d) for the
unknowns (ρ(1), v(1)

x , ∇⊥ ·v(1)
⊥ , E(1)) as functions of (m, y, z, t). This system of PDEs can

be shown to be incompletely parabolic in the sense of Gustafsson & Sundström (1978),
Strikwerda (1977), and well-posed for the Cauchy problem: details will be published
elsewhere. Consequently, at any given boundary, the proper number of independent
boundary conditions to be applied is given by the number of incoming waves of the
hyperbolic subsystem plus one. Note that up to this point, the formulation of (3.2a),
(3.2b), (3.5), (3.2d) applies to any one-dimensional mean flow satisfying (2.1), (2.2),
(2.4), (2.5).

When dealing with the ablative mean flows discussed in (§ 2.2), boundary conditions
are provided at the shock-wave front location, m = ξs tα , by the Rankine–Hugoniot
relations for linear perturbations (B 4). At the fluid external boundary m = 0 of
equation x = xe(y, z, t; ε), arbitrary time-dependent perturbations of the fluid density
and of the incident heat-flux are considered, so that we have

ρ(m, y, z, t; ε)|+ = ρe(y, z, t; ε),

(ϕ(m, y, z, t; ε)|+ − ϕe(y, z, t; ε)) · ne = 0,

or, in terms of linear perturbations,

ρ(1)
∣∣
+

+ (ρ̄∂mρ̄ )|+ x(1)
e = ρ(1)

e , (3.6)

ϕ(1)
x

∣∣
+

+ (ρ̄∂mϕ̄x)|+ x(1)
e = ϕe

(1)
x , (3.7)

where ne denotes the normal to the surface and q|+ stands for the limiting value of
the fluid quantity q(m, y, z, t) as m → 0+. In these equations, the linear deformation,
along the x-direction, of the fluid external perturbed surface, x(1)

e , satisfies the well-
known linearized kinematic boundary condition for a material surface (e.g. see Stoker
1958), in effect

ẋ(1)
e = v(1)

x

∣∣
+

+ (ρ̄∂mv̄x)|+ x(1)
e . (3.8)

3.1. Fourier mode evolution equations

The self-similar nature of the mean flows of § 2 naturally suggests a reformulation of
the system of PDEs (3.2a), (3.2b), (3.5), (3.2d) and of the boundary conditions (3.6)–
(3.8), (B 4) in the independent variables (ξ, y, z, t). This new formulation simply
proceeds from applying (2.13) and the partial derivative transformations

∂t q
(1)(m, y, z, t) =

(
∂t − αξt−1∂ξ

)
Q(ξ, y, z, t),

∂mq (1)(m, y, z, t) = t−α∂ξQ(ξ, y, z, t),

with the convention Q(ξ, y, z, t) ≡ q (1)(m, y, z, t), for any flow variable linear
perturbation q (1). Once Fourier transformed in the (y, z) variables, the ensuing
equations yield a system of linear PDEs in the independent variables (ξ, t). With
the definition

Fyz[q
(1)(m, y, z, t)] =

∫ +∞

−∞

∫ +∞

−∞
q (1)(m, y, z, t) exp[−i(ky y + kz z)] dz dy,
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and the notations (see table 5)

Ĝ(ξ, k⊥, t)≡Fyz[ρ
(1)(m, y, z, t)], V̂x(ξ, k⊥, t)≡Fyz

[
v(1)

x (m, y, z, t)
]
,

D̂⊥(ξ, k⊥, t)≡Fyz[∇⊥ · v
(1)
⊥ (m, y, z, t)], Θ̂(ξ, k⊥, t)≡Fyz[T

(1)(m, y, z, t)],

P̂ (ξ, k⊥, t)≡Fyz[p
(1)(m, y, z, t)], Φ̂x(ξ, k⊥, t)≡Fyz

[
ϕ(1)

x (m, y, z, t)
]
,

⎫⎪⎪⎬⎪⎪⎭ (3.9)

where

k⊥ =
√

k2
y + k2

z ,

is the modulus of the transverse wave vector k⊥, this system reads

∂t Ĝ = t−1(αξ∂ξ − Ḡdξ V̄ ) Ĝ − t−αḠ ∂ξ (ḠV̂x) − Ḡ D̂⊥,

∂t V̂x = t−1(αξ∂ξ − Ḡdξ V̄ ) V̂x + tα−2dξ P̄ Ĝ/Ḡ − t−α∂ξ P̂ ,

∂t D̂⊥ = t−1αξ∂ξ D̂⊥ + k2
⊥ P̂ /Ḡ,

∂t Θ̂ = t−1[αξ∂ξ − (γ − 1)Ḡdξ V̄ ] Θ̂ − tα−2[(γ − 1)P̄ ∂ξ + Ḡdξ Θ̄ ]V̂x

− (γ − 1)(t2α−2Θ̄ D̂⊥ + t2α−1k2
⊥Ḡ−μ−1Θ̄νΘ̂

− t2α−3dξ Φ̄ Ĝ/Ḡ + t−α∂ξ Φ̂x),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.10)

with the expressions

Φ̂x = −tα−1Ḡ1−μΘ̄ν(∂ξ Θ̂ + dξ Θ̄ [t2α−2(1 − μ)Ĝ/Ḡ + νΘ̂/Θ̄ ]), (3.11)

as inferred from (3.3a), and

P̂ = Ḡ Θ̂ + t2α−2Ĝ Θ̄ , (3.12)

after (3.4). The relevant formulation of the boundary condition equations (3.6)–(3.8)
also becomes

Ĝ|+ + t−α(Ḡdξ Ḡ)|+X̂e = Ĝe, (3.13)

Φ̂x |+ + t2α−3(Ḡdξ Φ̄ )|+X̂e = Φ̂ex, (3.14)̂̇Xe = V̂x |+ + t−1(Ḡdξ V̄ )|+X̂e, (3.15)

with the notation X̂e(k⊥, t) ≡ Fyz[x
(1)
e (y, z, t)], while the linear perturbation Rankine–

Hugoniot relations (B 4) take the form of (B 5). Since the transverse wave vector k⊥
solely intervenes in (3.10)–(3.15) through its modulus, solutions (Ĝ, V̂x, D̂⊥, Θ̂) of the
associated IBVPs may be considered as functions of (ξ, k⊥, t) only – solutions for
different wave vectors k⊥ of identical modulus k⊥ being then distinguished by their
initial or boundary conditions.

System (3.10), being incompletely parabolic, is handled via an operator
decomposition between a reduced hyperbolic system (Boudesocque-Dubois et al.
2003) and a parabolic scalar equation, along with a proper distribution of boundary
conditions among these subsystems. Numerical approximation in the ξ variable is
performed with the same adaptive multidomain spectral method as that used for the
mean flow while time-marching is carried out with a three-step semi-implicit Runge–
Kutta scheme (Williamson 1980). Treatments of time-dependent boundary conditions
such as those of (3.13), (3.15), (B 5), and of matching conditions at computational
subdomain interfaces for the hyperbolic subsystem are addressed by Boudesocque-
Dubois et al. (2003) and Gauthier et al. (2005). Solutions of the parabolic scalar
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equation are computed following the influence matrix technique developed by Pulicani
(1988). Arbitrary perturbed configurations of the present self-similar ablative flows
may be handled with this general method. In particular, linear perturbation boundary
conditions other than those defined by (3.13) and (3.14) may equally be considered.

3.2. Reduced Fourier mode equations

Given the self-similar nature of the mean flows of § 2.2, we may wonder whether
system (3.10) also admits a reduced variable formulation of some kind. This turns
out to be the case under particular assumptions bearing on the linear perturbations,
system (3.10) being then replaced by a reduced system of two-dimensional PDEs
where the time variable has been removed (see Appendix A for details).

Such a linear perturbation variable reduction amounts to rewriting (3.2a), (3.2b),
(3.2d), (3.5) in terms of the independent variables (ξ, η, ζ, t), with ξ given by (2.11), η

and ζ by the analogous relations

η = y t−α, ζ = z t−α, (3.16)

the exponent α keeping its definition (2.12), while assuming, in addition to the
mean flow quantity dependencies (2.13), the following perturbation time power-law
dependencies

ρ(1)(m, y, z, t) = t (δ−1)(α−1) G(ξ, η, ζ ),

T (1)(m, y, z, t) = t (δ+1)(α−1) T(ξ, η, ζ ),

v(1)
a (m, y, z, t) = t δ(α−1) Va(ξ, η, ζ ), a = x, y, z,

ϕ(1)
a (m, y, z, t) = t (δ+2)(α−1) Fa(ξ, η, ζ ), a = x, y, z,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.17)

where δ is a free parameter, defined by (A 2). The resulting system of equations, once
Fourier transformed in the (η, ζ ) variables, ultimately leads to a system of linear
PDEs in the (ξ, �⊥) variables (see § A.3) where �⊥ = k⊥tα – the ‘reduced wavenumber’
– is the modulus of the wave vector in the (η, ζ )-Fourier space. Upon introducing the
notations (cf. also table 5)

Ĝ, V̂x, D̂⊥, T̂, P̂, F̂x,

for the ηζ -Fourier transforms – or ‘reduced Fourier modes’ – of the linear perturbation
reduced functions

G, Vx, ∇(η,ζ ) · V⊥, T, P, Fx,

see (A 19), this system of reduced PDEs becomes

[(δ − 1)(α − 1) − α(ξ∂ξ − �)](Ĝ/Ḡ) + ∂ξ (ḠV̂x) + D̂⊥ = 0,

[δ(α − 1) − α(ξ∂ξ − �)]V̂x + Ḡ dξ V̄ V̂x + ∂ξ P̂ − dξ P̄ Ĝ/Ḡ = 0,

[δ(α − 1) − α(ξ∂ξ − �)]D̂⊥ − �2
⊥P̂/Ḡ = 0,

[(δ + 1)(α − 1) − α(ξ∂ξ − �)]T̂ + Ḡ dξ Θ̄ V̂x + (γ − 1)
(
Ḡ dξ V̄ T̂

+ P̄ ∂ξ V̂x + ∂ξ F̂x − dξ Φ̄ Ĝ/Ḡ + Θ̄ D̂⊥ − �2
⊥Ḡ−μ−1Θ̄νT̂

)
= 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(3.18)

where � is the operator defined by (A 21). Boundary conditions (3.6)–(3.8) and (B 4)
proceed similarly, yielding the ODEs (A 22) and (B 7) in the variable �⊥.

An important and interesting result brought up by the possible existence of such a
reduction is that for any flow variable linear perturbation q (1) satisfying the relation
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Laser light
Critical surface Ablation layer Shock wave

Subcritical plasma Conduction zone Shocked fluid Undisturbed
fluid

T

ρ

Figure 1. Schematic mean flow structure of an ablative heat wave under direct laser
illumination in terms of density ρ and temperature T profiles.

q (1)(m, y, z, t) = tnQ(ξ, η, ζ ), its yz-Fourier transform Q̂ is such that

Q̂(ξ, k⊥, t) ≡ Fyz[q
(1)(m, y, z, t)] = tn+2α Q̂(ξ, tαk⊥). (3.19)

Hence, although we do not actually consider, in this paper, solving boundary-value
problems for system (3.18), we shall make use of this property when analysing
numerical integration results of some particular IBVPs defined after (3.10).

4. Responses to laser illumination asymmetries
4.1. Background

The mean flow structure relevant to the early direct illumination of an ICF pellet by
laser beams may be divided into five regions (cf. figure 1).

Subcritical plasma. Closest to the laser beams, the expanding laser-absorption region
where the laser radiation is entirely absorbed, mostly for electron densities close to a
cutoff – ‘critical’ – value determined by the laser frequency.

Conduction zone. Beyond the critical electron density plane, the supercritical part
of the flow, also in expansion, which is mainly governed by electron heat conduction
and where electron density is above critical.

Ablation layer. The zone of steep density and temperature gradients where energy
convection becomes comparable to energy conduction.

Shocked fluid. The quasi-isentropic compression portion of the flow, up to the
fore-running shock wave, where energy convection is dominant.

Undisturbed fluid. The fluid lying at rest, ahead of the shock front.

The modelling of this mean flow by the single temperature fluid equations (2.1), (2.2)–
(2.4) evidently implies numerous assumptions that we shall not elaborate on at present.
Comparisons of results from laser imprinting models derived from these equations and
from hydrodynamics code simulations (Nishihara et al. 1998; Velikovich et al. 1998;
Goncharov et al. 2000), and from laser imprint simulations and experiments (Taylor
et al. 1996; Aglitskiy et al. 2002; Metzler et al. 2003) comfort these assumptions.

Several physical phenomena have been identified to play major roles in the ablation
flow non-uniformity evolution.

(a) Laser absorption in ICF occurring close to the critical surface, the subcritical
plasma may be held as nearly transparent to the incoming laser irradiation (Brueckner
& Jorna 1974). Consequently, accounting for laser absorption asymmetries amounts
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to taking in (2.3) an energy source term I of compact support about the critical
surface and of equivalent heat flux given by the local laser intensity.

(b) Temperature fluctuations forced by laser intensity asymmetries are smoothed
within the conduction zone due to electron heat conduction – ‘thermal smoothing’
– (Brueckner & Jorna 1974; Emery et al. 1991) with the consequence that flow
perturbations imprinted at the ablation layer by this forcing at the critical surface
are increasingly damped as the perturbation wavelengths become smaller than the
conduction zone thickness lcon (Emery et al. 1991).

(c) Each of the perturbed shock front, ablation layer and conduction zone
dynamics are of importance to the ablation flow perturbation response as shown
by simulations (Emery et al. 1991; Velikovich et al. 1998), modelling (Velikovich et al.
1998; Goncharov et al. 2000), and experiments (Aglitskiy et al. 2002).

(d) As could be expected from the mean flow properties and as has been confirmed
by simulations and experiments (Metzler et al. 2003), the perturbed flow within the
shocked-fluid region, and therefore the interaction between the rippled shock front
and the ablation layer, is essentially governed by convection and acoustic wave
propagation.

(e) The finite extent of the flow is determinant for the evolutions of perturbations of
wavelengths comparable to or larger than the distance separating the critical surface
from the shock front. In particular, the presence of this bounding shock wave and
the resulting confinement of the shocked-fluid region has stimulated laser imprinting
models (Ishizaki & Nishihara 1997; Velikovich et al. 1998) based on an analogy with
the Richtmyer–Meshkov instability (Richtmyer 1960; Meshkov 1969), by contrast to
the Rayleigh–Taylor instability analogy commonly invoked for strongly accelerated
ablation fronts.

( f ) The ablation layer is weakly accelerated, or even decelerated (Metzler et al.
1999), as compared to the strongly accelerated regime occurring during the shell-
acceleration stage. In the presence of a weak destabilizing inertial force field (the layer
acceleration), it is expected that the stabilizing and damping mechanisms at work
in ablation fronts are noticeably influencing, if not ruling, the layer dynamics. This
appears to be effectively the case as laser imprint simulations (Velikovich et al. 1998;
Goncharov et al. 2000; Schmitt et al. 2001) exhibit ablation front distortion decaying
oscillations for perturbation wavelengths sufficiently small, but much larger than
the layer characteristic length. Such a behaviour is recovered by existing modellings
(Goncharov et al. 2000, 2006), although the best available experimental data (Aglitskiy
et al. 2002; Metzler et al. 2003) do not cover enough oscillations to be conclusive
about the actual oscillation frequency and amplitude decay.

Nevertheless other mean flow key features have yet to be adequately addressed by
laser imprinting modelling, or even simulations.

Stratification. Since laser asymmetry wavelengths cover the full range spanned by the
different flow region characteristic lengths, mean flow stratification and confinement
effects must be properly rendered. The currently available laser imprinting model
taking into account the flow confinement (Goncharov et al. 2000, 2006) is based on a
sharp boundary modelling of the ablation layer (Piriz et al. 1997) and is consequently
improper for describing perturbation evolutions of wavelengths λ⊥ larger than the
conduction zone size, i.e. �con/λ⊥ � 1. Other more elaborate ablation front modelling
at large Froude numbers (Piriz & Portugues 2003; Sanz, Masse & Clavin 2006),
valid in particular for �con/λ⊥ < 1, ignore the bounding shock wave and are therefore
of limited usefulness for laser imprinting analysis. As for simulations, accurately
rendering stratification imposes drastic constraints on the local computational grid
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size which are not necessarily met in practice: perturbation wavelengths can be
thousands of times larger than the ablation layer characteristic length (see Goncharov
et al. 2006).

Unsteadiness. The conduction zone and shocked-fluid region thicknesses, as well
as the ablation layer characteristic length increase with time (Emery et al. 1991;
Velikovich et al. 1998), and often linearly with time (Goncharov et al. 2000, 2006).
The fact that in such circumstances, early perturbation growth is found in simulations
to be also approximately linear in time (Nishihara et al. 1998; Velikovich et al. 1998;
Metzler et al. 1999; Goncharov et al. 2000, 2006) casts doubt on results derived from
any modelling based on quasi-steady mean flow approximations.

Compressibility. Compressibility may affect ablation front instabilities in several
ways (Piriz 2001b):

through the stratification of the different flow regions (quantified by the ratio
γ a �/c2

S where a denotes an acceleration, � a characteristic length and cS the isentropic
sound velocity);

through the fluid adiabatic exponent γ which enters the fluid acoustic impedance;
through the flow regimes (characterized by local Mach numbers) in the expanding

conduction zone and in the ablation layer.
The laser imprinting model of Goncharov et al. (Goncharov et al. 2000, 2006) which
takes into account acoustic wave propagation within the shocked-fluid region, ignores
all other compressibility effects since it relies on a sharp boundary ablation front
model (Piriz et al. 1997) for low-Mach-number flows (Kull & Anisimov 1986). Such
a quasi-incompressible flow assumption is not necessarily satisfied throughout the
conduction zone in realistic ICF ablative flows (see Piriz 2001b). Unfortunately,
available investigations of the effects of a compressible conduction zone flow for
accelerated (Piriz 2001b) or unaccelerated (Piriz & Portugues 2003) ablation fronts
are of limited usefulness in laser imprinting configurations since they are restricted to
unconfined and steady ablative flows. Laser imprinting numerical simulations which
suffer none of the above restrictions, may, however, be questioned with respect to
acoustic effect rendering owing to the overly dissipative and dispersive numerical
methods commonly used in hydrodynamics codes dedicated to ICF applications.

On the other hand, taking into account the above features which are characteristic
of real ICF ablative flows, may be achieved by means of the similarity framework
of § 2. For direct laser beam irradiation, the relevance of these similarity solutions to
actual ICF pellet ablation flows is bound to the following assumptions.

(i) Electron and ion temperature decoupling within the hot plasma is weak.
(ii) Classical electron heat conduction prevails, i.e. we may take μ = 0, ν � 5/2 in

(2.2).
As mentioned by Brun et al. (1977), these conditions are best fulfilled during the early
irradiation of a material of low atomic number such as the cryogenic deuterium–
tritium mixture considered in ICF target designs (Bodner et al. 1998). In addition,
since the mean flow modelling of § 2 does not include an energy source term as in
(2.3), the corresponding solutions omit the subcritical plasma expansion and assume
that the (critical) surface of laser energy conversion into heat flux is a material
surface – i.e. of zero mass flux. This feature is not met in typical ablative heat waves
triggered by laser light irradiation. In that respect, the similarity solutions proposed
for a two-temperature fluid model of a plasma (Anisimov 1970; Sanmartı́n & Barrero
1978a) would provide, at the cost of increased complexity, an improvement in the
modelling of such flows. A further restriction is imposed by the laser intensity
time dependence at the critical surface which must follow (2.7) with the definitions
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γ μ ν α

5/3 0 5/2 4/3

Table 1. Ablation by direct laser beam illumination. Definitions of the fluid adiabatic exponent
γ , heat conduction density and temperature exponents μ and ν, and resulting similarity
exponent value α.

(2.12), (2.19). Such a laser intensity temporal law is not representative of current
schemes of ICF-pellet early irradiation by laser beams (e.g. see Goncharov et al.
2000), although it could be achieved in dedicated experiments. Given these mean
flow modelling limitations, the present application of the framework of §§ 2 and 3
to the laser imprinting problem aims at exhibiting qualitative stability behaviours
which may be encountered in unsteady compressible ablative flows related to ICF,
rather than providing quantitative estimates of perturbation evolutions in actual ICF
pellet implosions. Solving with high accuracy the mean flow and perturbation exact
equations (2.5), (3.10) – keeping in mind the leading shock-front non-isothermal
approximation (§ 2.2) – presents then the advantage of establishing, rather than
hypothesizing, which physical features of the flow play determining roles with respect
to its stability.

Our laser imprinting analysis of unsteady compressible ablative flows (Abéguilé
et al. 2006) relies on two self-similar mean flow configurations and their perturbation
which we detail in the next two sections (§§ 4.2, 4.3). Temporal response data obtained
from integrating (3.10) are then discussed in § 4.4 and are shown to exhibit, provided
that the perturbation configuration is properly chosen, the reduction of variables
discussed in § 3.2 and established in Appendix A. This result allows us (§ 4.5) to build
the reduced response (A 19) for each configuration and to draw firm conclusions.
In addition, an illustration (§ 4.6) of possible practical applications is provided by a
comparison of ablation front distortion dynamics obtained in different ablative flows.
Finally (§ 4.7), we discuss the present findings in connection with available results from
simulations and modelling of laser imprinting, as well as from models of ablation
fronts at large Froude numbers.

4.2. Self-similar mean flow configurations

The approximation of a material critical surface which is peculiar in the ICF context,
is consistent with the fluid density being constant along the self-similar flow external
boundary ξ = 0 (m = 0). Instantaneous fluid pressure and heat flux values at the
critical surface of a given ablative flow, along with the corresponding local values
of the constant R and of the heat conduction coefficient κ0, are then pertinent for
determining the ranges of the similarity solution parameters (2.8). Such values have
been extracted – for a monatomic gas and the Spitzer–Härm model of electron
heat conduction (see table 1) – from a simulation, with the fci2 multiple-physics
hydrodynamics code (Buresi et al. 1986), of a CH planar foil illuminated by a Laser
MégaJoule laser pulse (Fortin & Canaud 2000). Two particular cases, corresponding to
two different times of this CH foil ablation, have thus been selected, yielding the values,
via (2.8), of the boundary condition parameters Bp and Bϕ in table 2 (see table 4 for
the corresponding dimensional characteristic and reference flow-variable values).

The numerical integration of the associated nonlinear eigenvalue problem (2.14),
(2.18), (B 2) results in the solutions shown in figure 2 and characterized by the reduced
abscissae ξabl of the ablation front – as identified to correspond to the minimum of
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Configuration Bp Bϕ ξabl ξs Ltot Lcon Labl (10−3) MSabl Frabl Peabl

i 0.001 0.026 0.023 0.110 1.23 1.21 0.04 0.075 4.62 3.27
ii 0.030 0.257 0.118 0.300 1.08 1.05 1.80 0.159 2.64 3.11

Table 2. Examples of self-similar ablative flows relevant to ICF for the parameter set of
table 1. Solution boundary condition parameters Bp , Bϕ , characteristic similarity abscissas
ξabl , ξs , flow typical reduced lengths Ltot , Lcon , Labl , and ablation-front characteristic Mach,
MSabl , Froude, Frabl , and Péclet, Peabl , numbers.

the density-gradient scale length – and ξs of the shock front given in table 2. For
each solution, the conduction zone 0 � ξ < ξabl , ablation layer ξ � ξabl , shocked-fluid
region ξabl < ξ < ξs , and undisturbed fluid region ξs < ξ , are apparent on the density
(figure 2a) and temperature (figure 2c) reduced function profiles. Strong variations of
the reduced fluid particle acceleration Ā (figure 2e), of expression

Ā(ξ ) = (α − 1)V̄ (ξ ) − α ξ dξ V̄ (ξ ),

are noticeable across the ablation layers, as well as non-uniformities throughout the
conduction zone. In addition, profiles of the isentropic Mach numbers MS , here
defined in terms of the velocity relative to the ablation front ξ = ξabl , or

MS(ξ ) = |V̄ (ξ ) − V̄ (ξabl ) − α ξabl/Ḡ(ξabl )|/C̄S(ξ ), (4.1)

with C̄S ,the reduced isentropic sound velocity,

C̄S(ξ ) =

√
γ Θ̄ (ξ ), (4.2)

evidence that, for both solutions, the conduction zone expansion is in part supersonic,
while a low-Mach-number flow description could be legitimate for a neighbourhood
of the ablation layer and for the shocked-fluid region. The existence of a supersonic
expansion region is a peculiarity allowed by the assumption of a material critical
surface, but is also dependent on the respective values of the solution boundary
condition parameters (2.8): subsonic expansions can also be obtained with the present
mean flow modelling (cf. Boudesocque-Dubois et al. 2008).

This description is completed by the datum of some of the flow typical lengths via
their corresponding reduced lengths (table 2), namely the constants:

Ltot = t−α [x̄ (ms, t) − x̄ (0, t)] , ms = tαξs,

for the whole disturbed fluid region;

Lcon = t−α [x̄ (mabl , t) − x̄ (0, t)] ≡ t−α �con(t), mabl = tαξabl ,

for the conduction zone thickness �con;

Labl = t−α min
x

|d ln ρ̄/dx|−1 = min
ξ

|dξ Ḡ|−1 ≡ t−α �abl (t),

for the ablation front density-gradient scale length �abl ;
where the x-coordinate of a point ξ = mt−α is given by

x̄ (m, t) = tα
[
ξ/Ḡ(ξ ) + V̄ (ξ )/α

]
+ x̄ (0, 0).

In particular, the disparity between the characteristic lengths of the different flow
regions is apparent: while the conduction zone (Lcon) takes over 97 % of the whole
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Figure 2. Similarity solutions i and ii of table 2. Profiles in the self-similar variable ξ of the
mean flow reduced (a) density Ḡ, (b) velocity V̄ , (c) temperature Θ̄ , (d ) pressure P̄ , and (e)
material acceleration Ā. . . . , I; —, II. The isentropic Mach number, defined by (4.1), which is
also represented (f ) for both flows as a function of the normalized abscissa ξ/ξs , shows that, in
each case, a portion of the heat conduction region close to the fluid external boundary ξ = 0
is supersonic.

disturbed-fluid region length (Ltot ), the ablation layer characteristic length (Labl )
represents 0.003 % of this length for configuration i vs. 0.2 % for configuration ii.

These flow ablation layers are further characterized (table 2) by the ablation front
isentropic Mach number MSabl = MS(ξabl ), Froude number

Frabl = |Ū abl|/
√

|Āabl|Labl ,

and Péclet number

Peabl =
γ

γ − 1
Labl Ḡ(ξ abl)

1+μ
Θ̄ (ξ abl)

−ν |Ū abl|,

where Ū abl and Āabl are the reduced ablation velocity and front acceleration, namely

Ū abl = −αξabl/Ḡ(ξ abl), Āabl = (α − 1)[V̄ (ξ abl) − Ū abl]. (4.3)



18 J.-M. Clarisse, C. Boudesocque-Dubois and S. Gauthier

Froude values, for both configurations, are larger than unity, as is usual during the
early stage of the shell motion. Péclet values are quite similar in each case and
moderate, testifying the comparable importance of energy convection and conduction
within the ablation layers.

4.3. Incident heat flux modulations

The responses of the self-similar flows of table 2 to incident heat-flux modulations
have been investigated by considering, for t � tini where tini is some positive initial
time, time-dependent boundary heat-flux perturbations of the form

Φ̂ex(t) = Π(t; τ ) ϕ̄e(t) = Π(t; τ ) t3(α−1) Bϕ, (4.4)

with

Π(t; τ ) = 1 − 2/(1 + exp[(t − tini )/τ ]), τ � 0, (4.5)

in (3.14). As (t − tini )/τ becomes larger, Φ̂ex(t)/ϕ̄e(t) → 1−, so that the perturbed
configuration becomes that of a unit relative laser-intensity asymmetry. Note that this
limiting perturbation configuration is consistent with irradition asymmetries such as
laser beam non-uniformities, mispointing or imbalance which are proportional to the
instantaneous laser intensity.

In accordance with the identification of the fluid external boundary with the
critical surface, the boundary density perturbation is taken to be identically zero
in (3.13). Consequently, linear perturbation evolutions are obtained by numerical
integration of system (3.10), starting from zero initial perturbations at t = tini , with

boundary conditions (3.13) where Ĝe = 0, (3.14) with (4.4) and (3.15), and (B 5)

with ẐU = 0. Depending on the type of computations being performed, the bounds
of the integration-time range [tini , tend ] are either independent of the perturbation
wavenumber k⊥ being treated, or different for each wavenumber value. Typical
computations involve about 10 spectral domains of 50 collocation points each, and
may represent several millions of integration time-steps.

4.4. Fourier mode temporal responses

Linear perturbation responses are primarily analysed in terms of the absolute

density perturbation Fourier mode Ĝ, since this quantity determines the areal mass
perturbations measured in experiments (e.g. see Aglitskiy et al. 2002). As an indicator
of the global flow response we have retained the density perturbation overall flow
extremum

|Ĝ|max (k⊥, t) = max
ξ

|Ĝ(ξ, k⊥, t)|, (4.6)

whereas the density perturbation ablation front value

Ĝabl (k⊥, t) = Ĝ(ξabl , k⊥, t), (4.7)

is used to characterize the ablation layer dynamics. This latter quantity determines
the ablation front distortion amplitude as given by the linear deformation of the
iso-density surface of equation ρ(x, y, z, t; ε) = Ḡ(ξabl), namely

X̂abl (k⊥, t) = −Labl

tα

Ḡ(ξabl)
Ĝabl (k⊥, t). (4.8)

From this expression, the ablation front distortion is seen to be proportional to
the ablation layer density-gradient length Labl , and to the local mean-flow strain as
measured by the partial derivative ∂ x̄/∂ξ ≡ tα/Ḡ.
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Figure 3. Temporal responses of configuration ii of table 2 for incident heat-flux perturbation
rise-time τ = 0.01 in (4.5), and time 0.1 � t � 14. Evolution of the density perturbation overall

flow extrema |Ĝ|max as a function of (a) time and (c) conduction zone relative thickness k⊥�con .

Evolution of the ablation front distortions X̂abl , given by (4.8), as a function of (b) time and
(d ) conduction zone relative thickness k⊥�con . Results obtained for (a, b, from top to bottom;
c, d, from left to right) wavenumbers k⊥ = 0 (• of a, b only), 0.01, 0.1, 1, 10, 50 and 100. The
k⊥ = 100 data correspond, for the largest values of k⊥�con , to wavelengths approaching the
ablation layer characteristic length �abl (cf. table 2). Notice the disparity – up to seven decades
in perturbation amplitude for wavenumbers spanning four decades – in flow responses that
may be captured by the present high-accuracy numerical approach.

4.4.1. Spectral and temporal variable representation

Computations of the flow temporal responses in both configuration i and ii, over
a given time range (0.1 � t � 14), for several values of the heat-flux perturbation
rise-time (τ =1/6, 0.01, 0), and for wavenumbers k⊥ ranging from 0 to 100, lead
to the following findings. After an early time transient, inherent to the progressive
perturbation of the whole flow and to the heat-flux perturbation rise-time, density
non-uniformities, as illustrated by the evolutions (figure 3a) of the overall flow density

extrema |Ĝ|max (k⊥, t), are first seen to stagnate for sufficiently short times and small
wavenumbers (figure 3a, curves k⊥ � 0.1), and, as time increases, to oscillate (figure 3a,
curves k⊥ � 1) with decaying amplitudes for large enough k⊥. As k⊥ increases, the



20 J.-M. Clarisse, C. Boudesocque-Dubois and S. Gauthier

stagnation phase duration, oscillation periods and flow response magnitude decrease.
The corresponding ablation front distortion evolutions (figure 3b) exhibit three

distinct regimes as determined by the behaviours of Ĝabl (k⊥, t) through formula (4.8).
Hence the density perturbation stagnation phase induces a regime of front distortion
algebraic growth (figure 3b, curves k⊥ � 0.1), more precisely in t4/3 since α = 4/3 (cf.
table 1), whereas an oscillatory regime of amplitude modulation is discernable for
intermediate wavenumbers (figure 3b, curves k⊥ = 1, 10, 50), leaving place at smaller
wavelengths to a damped oscillatory regime (figure 3b, curves k⊥ =50 and 100).

4.4.2. Reduced variable representation

Analysing such results in terms of the relative size of the conduction zone,
k⊥�con ≡ k⊥ Lcon t4/3, rather than the time t (figures 3c, d ), highlights the physical
importance of this mean flow parameter for laser imprinting. The different regimes of
the flow and ablation front responses appear to correspond, for any wavelength, to
given ranges of this conduction zone relative thickness. In particular, we recover the
known rough features of laser imprinting as identified by previous simulations and
modellings – namely, the existence of a front distortion growth regime for k⊥�con < 1,
and of an oscillatory damped regime for k⊥�con > 1 (see figure 3d ). Similarly, the
significant reduction in flow non-uniformity as the conduction zone relative thickness,
k⊥lcon , at which the laser intensity modulation starts to be applied is increased
(figures 3c, d ), points out the effectiveness of thermal smoothing (Emery et al. 1991) in
laser imprinting. However the present results have no precedent in terms of details and
accuracy, notably in the range of relative wavelengths that is covered. In particular, an
example is given of ablation flow responses for wavelengths approaching the ablation
layer density-gradient scale length: cf. the curves k⊥ = 100 of figures 3(c, d ).

4.4.3. From Fourier mode temporal responses to reduced Fourier mode responses

A more complete description of the flow responses is achieved upon considering
computations over fixed ranges of the conduction zone relative thickness k⊥�con .
Moreover, by choosing the heat-flux perturbation rise-time τ in (4.4) to be zero,

the definition of Φ̂ex (t) becomes compatible with the perturbation variable reduction
relations (3.17), provided that the equation

(δ + 2)(α − 1) + 2α = 3(α − 1),

obtained after (3.17), (3.19) and (4.4), is satisfied, or, equivalently, that the free
parameter δ of (3.17), (3.18) is given by

δ = −α + 1

α − 1
. (4.9)

Would the perturbation variable reduction (3.17) be achieved by the numerical
solution of the IBVP (3.10)–(3.15), (B 5), the following relations should hold:

Ĝ(ξ, k⊥, t) = Ĝ(ξ, k⊥tα), (4.10a)

t1−α V̂x(ξ, k⊥, t) = V̂x(ξ, k⊥tα), (4.10b)

t D̂⊥(ξ, k⊥, t) = D̂⊥(ξ, k⊥tα), (4.10c)

t2(1−α) Θ̂(ξ, k⊥, t) = T̂(ξ, k⊥tα), (4.10d)

t2(1−α) P̂ (ξ, k⊥, t) = P̂(ξ, k⊥tα), (4.10e)

with α = 4/3.
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Figure 4. Temporal responses of configuration ii of table 2 for incident heat-flux perturbation
rise-time τ = 0, and time t such that 10−2 � Lconk⊥t4/3 � 102. Ablation front density

perturbations Ĝabl as a function of (a) time and (b) reduced wavenumber �⊥ = k⊥t4/3. Ablation

front (c) temperature perturbations Θ̂abl as a function of time, and (d ) reduced temperature

perturbation temporal equivalent, t−2/3 Θ̂abl , as a function of the reduced wavenumber
�⊥ = k⊥t4/3. Results obtained for k⊥ = 0.01, 0.1, 1, 10, 50 and 100. The superposition of
the results when plotted vs. �⊥ (b, d ) shows the variable reduction defined by (4.10).

For non-zero wavenumbers, time-integration results computed over the same range
of the parameter �⊥ = k⊥t4/3 but for different values of k⊥, present the characteristics
of the variable reduction as stipulated by the above relations. Indeed, past an initial
transient set-up of perturbations throughout the flow, computed values of the left-
hand sides of (4.10) recorded, for different non-zero k⊥, as functions of k⊥t4/3, are
found to agree within the accuracy limits allowed by discrepancies in the k⊥t4/3

variable sampling; see figure 4 for an illustration in the configuration ii case.
For zero wavenumber (k⊥ = 0), computed temporal responses (not shown) turn out,

for sufficiently long integration times, to possess the similarity defined by (4.10a, b, d , e)
which is merely that of the mean flow (2.13). Given that the boundary heat-flux
perturbation (4.4), (4.5) for τ = 0 comes down to a shift of the parameter Bϕ of (2.8),
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Figure 5. Temporal and reduced responses of configuration ii of table 2. Amplitude plot (a) in

the (m, t) variables of the temporal density perturbation response Ĝ(ξ, k⊥, t) obtained at a
wavenumber value of k⊥ = 0.01, with an incident heat-flux perturbation rise-time τ = 0, and
for times t such that 0.01 � �⊥ � 210. Corresponding representation (b) in the (ξ, �⊥) variables

of the associated reduced response Ĝ(ξ, �⊥) as obtained over the partial range 0.1 � �⊥ � 210
by means of (4.10a) taken for a given value of k⊥. The fluid external surface and shock-wave
front located, respectively, at ξ = 0 and ξ = ξs = 0.3 in (b), correspond, respectively, to the
lower and upper m-coordinate boundaries in (a). In both plots, the ablation layer appears as
the ridge of maximum perturbation amplitude.

and that the zero boundary density perturbation in (3.13) is compatible with the laws
(2.13), the resulting (nonlinearly) perturbed flow may be expected to obey the same
similarity. The above linear perturbation temporal response results confirm this, at
leading order in the perturbation amplitude, thus suggesting that both configurations
i and ii are linearly stable with respect to one-dimensional perturbations. The long-
time constant behaviour of the density perturbation and t4/3 growth of the ablation
front deformation at zero wavenumber, shown in figure 3(a, b) and discussed in the
preceding sections, are a mere transcription of this fact.

Such results show that, for the present mean flow configurations, the perturbation
temporal responses (3.9) converge, via the relations (4.10), towards the reduced
responses (A 19), so that the latter may be held as attractors for the solutions of the
temporal PDE system (3.10). Consequently, we are able to determine the perturbation
reduced responses (A 19), over a given range [�⊥min, �⊥max ], �⊥min > 0, of the reduced
wavenumber �⊥ ≡ k⊥t4/3, by means of a single, properly tailored, temporal response
computation at a particular non-zero wavenumber k⊥, and for �⊥ =0 by a sufficiently
long-time computation at k⊥ = 0.

4.5. Reduced Fourier mode responses

4.5.1. Overall flow responses

An example of reduced responses in the configuration ii case is given in figures 5(b)
and 6 under the form of plots – over the full extent of the flow, 0 � ξ � ξs =0.3, in the
reduced space variable ξ and over the reduced wavenumber range 0.1 � �⊥ � 210 – of
the five perturbation reduced Fourier modes of (4.10). Care was taken in choosing, for
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Figure 6. Reduced responses of configuration ii of table 2. Amplitude plots in the (ξ, �⊥)

variables of the reduced perturbation responses for (a) the x velocity V̂x , (b) the transverse

expansion D̂⊥, (c) the temperature T̂, and (d ) the pressure P̂ over the whole flow reduced
extent 0 � ξ < 0.3 and the reduced wavenumber range 0.1 � �⊥ � 210. The ablation layer
located about ξ � 0.12 is noticeable in the x-velocity (a), temperature (c) and pressure (d )
responses by more or less pronounced sharp amplitude variations. The conduction zone
(0 � ξ � 0.12) is characterized by an important damping of temperature perturbations as �⊥
increases (c), with the noticeable exceptions of the supersonic expansion region (ξ � 0.03) and
of the vicinity of the ablation layer. Pressure perturbations (d ) are seen to build up within this
supersonic region for increasing �⊥, while their arrangement, for large enough �⊥, along lines
(ξ ↗, t ↗) and (ξ ↘, t ↗) within the shocked-fluid region (0.12 � ξ < 0.3) is indicative of
acoustic waves propagating back and forth between the conduction zone and the shock front.

the corresponding temporal response computation, a sufficiently small initial time tini

so that, by the time t at which �⊥ = k⊥t4/3 = 0.1, the influence of the perturbation initial
transient set-up could be held as negligible. Single-mode temporal or instantaneous
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spectral response data are thus available throughout the whole flow by considering
either k⊥, or t , to have a fixed non-zero value.

Hence for some particular non-zero wavenumber, the reduced response represen-
tations in figures 5(b) and 6 determine, via (4.10), the time evolution, in the mean-flow
reduced space, of perturbations between the fluid external surface, ξ =0, at which
the laser intensity modulation is applied, and the fore-running shock front at ξ = ξs .
The correspondence between such a representation and that obtained in the more
physically representative variables m and t is illustrated in the case of the density

perturbation Ĝ by figure 5(a, b). In figure 5(a), the trajectories m =0 of the fluid
external surface and m = ξs t4/3 of the shock front – visible as the upper-m edge of the
plotted surface – are mapped, respectively, into the boundaries ξ =0 and ξ = ξs = 0.3
of the (ξ, �⊥) domain in figure 5(b). The ablation layer identified in figure 5(a) by the
ridge of density perturbation amplitude, is found in figure 5(b) about the straigth line
ξ � 0.12. Owing to the mean flow dilatation, the perturbation amplitude fluctuation
spatial frequency, whether in the m or ξ variable, increases with time, and more
markedly in the conduction zone than in the shocked-fluid region, in accordance
with the flow region respective dilatations in the x-coordinate system given by the
associated reduced lengths (see table 2). For the particular case k⊥ = 0, the reduced
response data are simply given by the long-time values of the reduced perturbation
temporal equivalents found on the left-hand sides of (4.10a, b, d, e).

At any given non-zero time, the same reduced responses obtained for �⊥min �
�⊥ � �⊥max yield, through a mere rescaling of the spectral and response variables,
the perturbation spectra over the wavenumber range �⊥min t

−α � k⊥ � �⊥max t−α , with
a wavenumber resolution given by the time-integration data recording rate. As in
the temporal response case, the desired spectral data points at k⊥ = 0 are provided
by the corresponding temporal response long-time computation.

We leave for future work a detailed analysis of perturbation fluctuation patterns
such as those displayed in figures 5 and 6. Nevertheless, several features of these
patterns are worth mentioning. Temperature perturbations (figure 6c) throughout
the conduction zone (0 � ξ < 0.12), but away from the supersonic expansion region
(0 � ξ � 0.03) and the ablation layer (ξ � 0.12), are noticeably damped for large �⊥
as could be expected from the thermal smoothing taking place in this region. The
supersonic expansion region, noticeable in each of the five flow variable perturbation

responses Ĝ, V̂x , D̂⊥, T̂, P̂ (figures 5b, 6), is particularly apparent in terms
of pressure perturbations (figure 6d ), suggesting a trapping of acoustic waves of
sufficiently short wavelengths within this portion of the flow. Within the shocked-
fluid region (0.12 � ξ < 0.3), acoustic waves, as witnessed by pressure perturbation
fluctuations (figure 6d ), propagate back and forth between the shock-wave front and
the conduction zone, including the ablation layer, the dynamics of these regions
possibly interfering with each other. This acoustic reverberation maintains itself for
larger values of �⊥ than the interaction between the critical surface and the ablation
layer does, as could be expected from the smaller size of the shocked-fluid region
(Ltot −Lcon � 0.03) as compared to the conduction zone extent (Lcon = 1.05), and from
the large level of heat diffusion within the conduction zone.

4.5.2. Ablation front responses

Taking full advantage of the temporal response variable reduction (4.10), reduced
responses for both configurations i and ii have been determined for extended ranges of
the reduced wavenumber �⊥ (see table 3). In the configuration ii case, the reasonably
small value of the ratio Labl/Ltot � 2×10−3 (cf. table 2) has permitted the computation
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�⊥min �⊥max

i 0.01 210
ii 0.01 3 491

Table 3. Reduced wavenumber ranges for the reduced responses of configurations
i and ii of table 2.

of perturbations up to times where the ablation front characteristic length exceeds
the perturbation wavelength: the chosen value of �⊥

ii
max in table 3 is such that

�abl (tend )/λ⊥ > 1. In the configuration i case, an equivalent computation would be
far too demanding in terms of spatial resolution and number of integration time
steps owing to the much smaller ratio (Labl/Ltot )

i � 3 × 10−5 (cf. table 2), whence the
moderate value of �⊥

i
max retained in table 3.

The corresponding results are analysed in terms of the reduced density perturbation
overall flow extremum and ablation front values, i.e.

|Ĝ|max (�⊥) = max
ξ

|Ĝ(ξ, �⊥)|, Ĝabl (�⊥) = Ĝ(ξabl , �⊥), (4.11)

as functions of k⊥�con ≡ �⊥Lcon . These responses (figure 7) show that, for the present
flows:

(i) Both |Ĝ|max (�⊥) and |Ĝabl (�⊥)| are almost constant for k⊥�con � 0.1, and bounded
from above by their respective values at �⊥ =0 (see figure 7 a, b). In particular, we
have

|Ĝabl (�⊥)| � const � |Ĝabl (0)|. (4.12)

The same feature is verified at different flow locations, as well as for the other

fluid quantity reduced perturbations V̂x and T̂, thus indicating that the mean
flow self-similar character dominates the perturbation evolution, not only for purely
longitudinal perturbations, i.e. at k⊥ = 0 (see § 4.4.3), but also for sufficiently small
perturbation reduced wavenumbers. The corresponding three-dimensional perturbed
flow may then be pictured roughly as consisting of one-dimensional flows proceeding
independently along each line of constant (y, z) according to the particular self-similar
solution defined by the perturbed boundary conditions at the point (m =0, y, z). Such
a quasi-one-dimensional motion description is qualitatively reasonable as long as:
(a) a significant amount of the ablative flow driving source – in effect the external
boundary heat flux – perturbation is transmitted to the entire flow, and (b) the
perturbation transverse flow has not yet reached significant levels. Early investigations
of laser illumination non-uniformities (e.g. see Brueckner & Jorna 1974) predicted that
boundary heat-flux perturbation transmission at the ablation layer should roughly
cease to be effective for wavelengths approaching the conduction zone size, i.e. for
k⊥�con � 2π. The present results are consistent with such a prediction: the data in
figure 3 indicate that ablation front perturbations may be decreased by one (two)
order(s) of magnitude upon applying the same heat flux perturbation for k⊥�con � 5
(respectively, k⊥�con � 10) – cf. the curves for k⊥ = 50 (respectively, k⊥ = 100) –
rather than for k⊥�con < 1 (curves for k⊥ =10). Perturbation coupling between the
ablation front and the flow external boundary is thus marginal for k⊥�con � 5, and
negligible for k⊥�con � 10. However ablation-front perturbations are seen to depart
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Figure 7. Reduced responses of configurations i and ii of table 2 over the reduced wavenumber

ranges of table 3. Overall flow extrema |Ĝ|max (a, b only) and ablation front values Ĝabl of
the density perturbation reduced responses vs. the relative conduction zone size, k⊥�con , for
configurations (a, c) i and (b, d) ii, and (e) proof, in the configuration ii case, of the damped

oscillatory behaviour (4.15) of Ĝabl in the limit �abl/λ⊥ → 1−. In (e) the comparison is based

on a determination of the constants in (4.15) by a least-squares fit of the data Ĝabl (�⊥) over the
range 0.7 � �⊥Labl/2π � 1. The corresponding computations involve, respectively, over 11×106

and over 8 × 106 time integrations of system (3.10) for configuration i and ii.

significantly from the self-similar behaviour Ĝabl (�⊥) = const, for values of k⊥�con

as low as 0.5 (figure 7a, b), i.e. for λ⊥ < 0.1 �con , although heat-flux perturbation
transmission throughout the conduction zone is still effective at this stage (see the
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reduced temperature perturbation response in figure 6c). Such a departure for the
reduced temperature and pressure perturbations (figure 6c, d ) are first observed in
the vicinity of the ablation layer: noticeable variations with respect to �⊥ appear, for
�⊥ � 1, in the region 0.1 <ξ < 0.15. Quite differently, the perturbation transverse flow
(figure 6b) builds up mainly in the conduction zone region close to the external surface
as well as, to a weaker extent, downstream of the shock front. Hence, the perturbed
flow departure from its quasi-one-dimensional self-similar motion originates from
three distinct regions: the flow external surface; the ablation layer; and the leading
shock front. This description is not qualitatively different from those given by previous
studies of realistic ICF laser-imprint configurations (cf. § 4.1).

A noteworthy consequence of the mean flow self-similarity dominance on the
perturbation evolution at long wavelengths, is that perturbations evolve over a
characteristic time, say t⊥, comparable to the mean flow evolution time t, namely,

t⊥ � t = 3 t/4. (4.13)

This shows the critical influence of the mean flow unsteadiness at this stage. The
flow compressibility also comes out to be determinant in that the ablation front
characteristic time t⊥abl remains smaller than the acoustic transit time λ⊥/cSabl ; we
have, for k⊥ �con = �⊥ Lcon < 1,

t⊥abl

λ⊥/cSabl

� t

λ⊥/cSabl

=
3

8π
C̄S(ξabl ) �⊥ < 1, (4.14)

where C̄S(ξabl ) is given by (4.2).

(ii) For k⊥�con > 1, |Ĝ|max (�⊥) and Ĝabl (�⊥) undergo damped oscillations as �⊥
increases (figure 7a, b). In effect, two subregions of the �⊥ spectrum may be identified.

(a) For moderate values of �⊥ (cf. figure 7c, d , for 1 < �⊥Lcon), Ĝabl displays
oscillatory behaviours which do not reduce to damped monochromatic sinusoidal
oscillations. At this stage, the shock front and ablation layer are no more than a
wavelength apart and therefore strongly interfere with each other (see figures 5b
and 6d ). Comparatively, the coupling between the external boundary and the
ablation layer is much weaker and presents a faster decrease with �⊥, as shown
by the respective levels of reduced temperature and pressure perturbations within
the conduction zone and the shocked-fluid region (see figure 6c, d ). In that respect,
the presence of supersonic expansion regions close to the flow external boundaries
m =0 contributes to this increased decoupling: perturbations introduced at m =0
may reach the ablation layer only by means of thermal diffusion since the
upstream propagation of acoustic-type fluctuations is inhibited in these regions.

Comparison of t⊥abl , as estimated from periods between consecutive phase

reversals of Ĝabl , with the mean-flow characteristic time t reveals that the mean-
flow unsteadiness influence gradually decreases, the threshold value t⊥abl/t = 0.1
below which a mean-flow quasi-steady assumption may be locally justified,
being reached for �⊥Lcon � 211 (�⊥Lcon � 200, equivalently �abl/λ⊥ � 0.06) in
configuration i (respectively, configuration ii) case. Oscillation pseudo-frequencies
associated to t⊥abl , evolve then, for configuration i (configuration ii), from values
significantly larger than (respectively, slightly larger than), to values slightly larger
(respectively, smaller, but not much smaller) than the acoustic frequency cSabl k⊥.
Hence, if the perturbation flow compressibility decreases in both cases, it stays
high in the configuration i case, and remains significant for configuration ii. This
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feature is to be related with the proximity of the shock-wave front at this point
of the flow evolutions.
(b) For larger values of �⊥ (configuration ii, see figure 7e for �abl/λ⊥ � 0.1)
ablation-front density oscillations become the damped sinusoidal type. This
regime corresponds to distances between the shock front and the ablation layer
increasing from 1 to 17 perturbation wavelengths. The interaction between the
dynamics of these two fronts, under the form of acoustic wave reverberation
and downstream convection of vorticity and entropy perturbations initiated at

the shock front, is thus weakening. Reduced density perturbation Ĝabl evidences
then, as the ablation layer characteristic length �abl becomes comparable to the
perturbation wavelength λ⊥, i.e. in the limit �abl/λ⊥ → 1−, an exponentially
damped oscillatory behaviour of the form (see figure 7e)

Ĝabl (�⊥) ∼ Re {a0 exp[(−σ + iω)�⊥]} , (4.15)

where a0 is a complex constant, and σ , ω two real positive constants.
Throughout this regime, oscillation frequencies remain sufficiently high with

respect to the acoustic frequencies (in a ratio of about 1/3) so that the perturbation
flow compressibility, under the form of acoustic effects, cannot be neglected.

Damped oscillations of ablation fronts are predicted by the low-Mach-number sharp
boundary modelling of laser imprinting (Goncharov et al. 2000, 2006). However, the
applicability of such a modelling to the present flow configurations is restricted by
at least two of its underlying assumptions. One is the low-Mach-number ablative
flow approximation which is improper for describing the outermost portions of
the heat conduction zone expansions, and therefore imposes a lower bound on
the perturbation wavenumber spectrum that may be considered. The other is the
steady mean-flow approximation which, as found above, is here only justified for
wavelengths much smaller than the conduction zone size. Another limitation is the
neglect of the ablation and shock-front accelerations, whereas the self-similar flows
of table 2 involve accelerating ablation layers and shock fronts. Estimates obtained
in this context should thus be taken with some caution. In (Goncharov et al. 2006,
equation 49), ablation front perturbation oscillations are described as originating
from three different types of sources, each being associated to a typical frequency.

(i) Acoustic waves emitted by the rippled shock front, with induced frequencies
corresponding roughly to the local acoustic frequency, here cSabl k⊥ = C̄S(ξabl ) k⊥ t1/3.

(ii) Vorticity and entropy perturbations left out by the rippled shock front, of
associated frequencies given, in the present cases, by the formula

4

3

√
1 − MS

2
D

MSD

Ḡabl

ḠD

Ū abl k⊥ t1/3, (4.16)

where Ū abl is the reduced ablation velocity (4.3), ḠD the reduced density value
downstream of the shock front, and MSD the relative flow Mach number at this very
location.

(iii) Ablation front stabilization due to the so-called ‘rocket effect’, or dynamic
overpressure mechanism (Sanz 1996; Piriz et al. 1997), with corresponding frequencies
at present estimated by the expression

Ū abl (L0 k⊥ t4/3)−1/2νk⊥ t1/3, (4.17)

where L0 = νν(ν + 1)−(ν+1) Labl and ν = 5/2.
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These formulae should, in principle, be applied within the reduced wavenumber
range 2π/Lcon � �⊥ � 2π/L0 (sharp boundary model restriction) provided that
t⊥abl/t � 1 (stationary mean flow approximation). Under these restrictions, oscillation
pseudo-frequencies in the configuration ii case are found to be, consistently, at most
30 % below the vorticity/entropy frequency (4.16), while being, as �⊥ become larger,
increasingly higher (from 1.3 times to 2 times) than the rocket-effect frequency
estimate (4.17). For configuration i, unsteadiness effects are too important during
the oscillation regime (a) identified above for the estimates (4.16) and (4.17) to be
reliable. For this flow, oscillation pseudo-frequencies are higher than, or close to, the
acoustic frequencies, thus indicating that compressibility effects and acoustic waves
prevail over the actions of upstream vorticity/entropy perturbations and rocket-effect
stabilization. This situation which predominates in this case, lasts only for the first
few oscillations of the ablation front in configuration ii, giving way, for increasing
�⊥, to a regime dominated by vorticity/entropy fluctuations.

The above results, once transcribed in terms of ablation-front distortions by means
of (4.8), here equivalently

X̂abl (k⊥, t) = t4/3 X̂abl (�⊥) =
�⊥

k⊥
X̂abl (�⊥), (4.18)

with

X̂abl (�⊥) = − Labl

Ḡabl

Ĝabl (�⊥), (4.19)

or by means of front relative distortions

k⊥ X̂abl (k⊥, t) = �⊥ X̂abl (�⊥), (4.20)

establish the existence of three distinct regimes.
(i) Algebraic growth. For k⊥�con � 0.1, as a mere consequence of (4.12), (4.18) and

(4.19), the front distortion amplitude is found to grow as

X̂abl (k⊥, t) ∼ const t4/3, (4.21)

as testified to by the relative distortion response growth (figure 8)

k⊥ X̂abl (k⊥, t) ∼ const �⊥,

where the constant is bounded from above, in magnitude, by |X̂abl (0)|. This algebraic
growth is a transcription, at the ablation front location, of the perturbation dynamics
being dominated by the mean flow self-similarity, and, more specifically, by its
unsteadiness – cf. (4.13) – and stretching – exemplified by the factor t4/3 in
(4.21). Through this dominance, the perturbation flow also inherits the physical
characteristics of the mean flow, and particularly its confinement and compressibility.

(ii) Modulated amplitude oscillations. For k⊥�con > 1 but �abl/λ⊥ � 1, an oscillatory
regime of modulated amplitudes prevails (figure 8) during which the maximum front
distortion amplitude is reached after one (for k⊥�con � 5 in configuration i, cf.
figure 8a) or several phase reversals (for k⊥�con � 50 in configuration ii, cf. figure 8b),
this maximum being such that

max
t

|X̂abl (k⊥, t)| ∝ k−1
⊥ , (4.22)

by virtue of (4.20). The existence of such oscillatory behaviours is in agreement with
simulations and modelling of laser imprinting (cf. § 4.1). However, a major qualitative
difference with modellings which ignore the mean flow time-dependence, is the actual
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Figure 8. Reduced responses of configurations i and ii of table 2 over the reduced wavenumber

ranges of table 3. Relative ablation-front distortions, k⊥X̂abl , vs. the relative conduction
zone thickness, k⊥�con , for configurations (a) i and (b) ii. These front relative distortions
which relate distortion amplitudes to perturbation wavelengths, depend solely on the reduced
wavenumber �⊥ – see (4.20) – and therefore entirely determine the temporal and spectral
responses of the ablation fronts for all non-zero wavenumbers through a mere application of
(4.18). The regimes of front distortion growth for k⊥�con < 1 – algebraic in t4/3, i.e. linear in
�⊥, for k⊥�con � 0.1 – and of modulated amplitude oscillations for k⊥�con > 1 but �abl/λ⊥ � 1,
are apparent. (b) Exemplifies the damped oscillatory regime prevailing for k⊥�con � 1 with the
behaviour of (4.23) as �abl/λ⊥ → 1−.

occurrence of amplitude modulation – including some further amplification – in
place of a predicted dominant decay. This difference is symbolized by the t4/3 factor
in (4.18) which results from the mean-flow stretching, and which has no possible
equivalent in front-distortion descriptions with such modellings (see Goncharov et al.
2000, equation 9; 2006, equation 49). These modulated-amplitude front-distortion
oscillations also result from the strong coupling of the ablation layer and shock-
front dynamics, with a predominant or perceptible influence of the perturbation flow
compressibility – including acoustic effects – and a decreasing effect of the mean
flow unsteadiness. As the reduced wavenumber and the relative distance between the
ablation layer and the shock front increase, the front distortion dynamics gradually
evolves from a regime where compressibility and acoustic effects are dominating, to
one being primarily influenced by the upstream vorticity/entropy perturbations left
behind the fore-running shock.

(iii) Damped oscillations. For k⊥�con � 1 and �abl/λ⊥ � 1, front distortion amplitudes
follow a damped oscillatory regime, of limiting behaviour, as �abl/λ⊥ → 1−,

X̂abl (k⊥, t) ∼ t4/3 Re
{
b0 exp[(−σ + iω)k⊥t4/3]

}
, (4.23)

with b0 a complex constant, σ and ω real positive constants inherited from (4.15),
(4.18), (4.19) – or equivalently

k⊥ X̂abl (k⊥, t) ∼ �⊥ Re {b0 exp[(−σ + iω)�⊥]} ,

(see figure 8b). During this regime, front-distortion decaying oscillations occur at
frequencies sufficiently close to those characterizing vorticity/entropy-type oscillations
(4.16), so that these may be held as descriptive of most of the front distortion dynamics.



Linear perturbation response of self-similar ablative flows 31

This assertion is substantiated by the fact that the oscillation exponential damping
rate, of which σ in (4.23) is an upper bound, is smaller – by more than one order of
magnitude – than that given for the rocket-effect stabilization (Sanz 1996; Piriz et al.
1997). The form of the damping factor and the particularly high wavenumber values
corresponding to this regime, for which no other results are currently available, call
for further analyses that we leave for future studies. The fact that the oscillation
frequencies are three times lower than the acoustic frequencies cS k⊥, leads to the
conclusion that shock-induced acoustic waves are of a lesser influence, but also that
compressibility effects should not be neglected.

Ablation front responses are further characterized by instantaneous front-distortion
spectra, which, for the sake of a comparison between self-similar configurations,
are presently taken at some physically equivalent time. Upon taking this time to
correspond, in each configuration, to the penetration at the same dimensional depth,
say Δ′, of the shock wave front, we have, with the notations of (2.8), (B 3),

xc tα
Δ W̄ = Δ′,

where tΔ denotes the corresponding dimensionless time. This definition and the
relation

k⊥ = xc k′
⊥,

between dimensionless, k⊥, and dimensional, k′
⊥, wavenumbers, lead to the expression

of the dimensional front-distortion spectrum at the dimensional time t ′
Δ = tc tΔ, namely

X̂′
abl (k

′
⊥, t ′

Δ) = xc X̂abl (k⊥, tΔ) = xc tα
Δ X̂abl

(
�⊥ = xck

′
⊥tα

Δ

)
=

Δ′

W̄
X̂abl

(
�⊥ =

Δ′

W̄
k′

⊥

)
. (4.24)

Given that this expression is independent of the flow-dimensional characteristic values,
the corresponding spectral data are representative of any of the flows belonging to
a given self-similar configuration, whence the comparison shown in figure 9. As it
could be expected from (4.24), these ablation-front distortion spectra present the
same characteristics as the ablation-front density perturbation responses displayed
in figure 7(a, b), including the dominance of long wavelengths for the present
configurations. The fact that the maximum responses are obtained for k⊥ =0, and
that these very responses obey the mean flow similarity (4.10a, b, d , e), points out
the determining influence of the mean flow continuous and unsteady character on
the long-wavelength perturbation evolutions. The ablation-layer stratification, via its
characteristic length Labl in (4.8), and its stretching in time are responsible for the
front-distortion growth (4.21). This influence is also perceivable at shorter wavelengths
since front-distortion amplification is more pronounced for the configuration with
the largest relative ablation layer characteristic length, Labl/Ltot ; cf. the modulated
amplitude oscillatory regimes for k⊥�con > 1 in figures 8(a, b). This influence is global
since the mean flow with the largest ablation layer characteristic length presents
the largest front-distortion amplitudes: the amplitudes of the spectrum envelope for
configuration ii are larger than those of configuration i (see figure 9), in agreement

with the fact that �′
abl

ii
> �′

abl
i.

4.6. An assessment of ablation parameter effects on laser imprinting

Self-similar ablative flow responses such as those obtained for configurations i and ii

may also be used to assess the influence of different mean flow parameter variations on
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Figure 9. Reduced responses of configurations i and ii of table 2 over the reduced wavenumber
ranges of table 3. Comparison, between configurations i and ii, of the instantaneous dimensional

ablation-front distortion spectra, X̂′
abl , obtained by the time the shock-wave front, in each

configuration, has reached the same penetration fluid depth Δ′; see (4.24). The dashed line
portions of the spectral curves are joining, for each configuration, the k′

⊥ = �⊥min W̄ /Δ′ data
points to the respective results obtained for k′

⊥ = 0. The thin vertical dotted line indicates
the dimensional wavelength value, λ′

⊥, retained for carrying out the dimensional response
comparisons of the flows listed in table 4; see § 4.6. The above spectra are independent of the
particular flows taken in each configuration, whence the axis scales in arbitrary units (a.u.).

the flow non-uniformity evolutions. A simple illustration is given here by considering,
in addition to the two reference flows of configurations i and ii, three distinct flows of
the configuration ii family (ii a, ii b, ii c) differing from the configuration i reference
flow through the sole variation of one of the following parameters:

(i) incident heat flux (ii a);
(ii) external pressure (ii b);
(iii) initial fluid density (ii c).

The dimensional characteristic and reference values of the flows in table 4 are deduced
from the definitions of the boundary conditions (2.7), boundary condition parameters
(2.8) and reference values (2.9). Dimensional front-distortion comparisons between
each of the configuration ii flows and flow i demonstrate the following.

(i) An incident heat-flux, i.e. laser intensity, ramp steepening – (ϕ(1)
∗ /t∗)

i > (ϕ(1)
∗ /t∗)

ii a

– induces a front distortion amplitude, growth regime duration and oscillation period
decrease (see figure 10a). Note that in the case of laser imprinting by a constant
irradiation, an increase of the incident laser intensity has been found, in simulations,
to have a similar impact (see Goncharov et al. 2000).

(ii) A decrease of the external pressure – (p∗/t
2/3
∗ )i < (p∗/t

2/3
∗ )ii b – has identical

consequences (see figure 10b).
(iii) A larger initial fluid density – ρi

c > ρii c
c – leads to smaller front-distortion

amplitudes but larger growth regime duration and oscillation periods (cf. figure 10c).
(iv) A more realistic description of the effects of an incident laser intensity increase,

as that allowed by the comparison of flows i and ii, suggests a more complex situation.
For the present CH foil ablation, the fluid pressure and heat conductivity coefficient at
the critical density surface also increase with the incident intensity (see table 4), so that
the differences in front-distortion responses (figure 10d ) result from a conjugation of
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Units i ii ii a ii b ii c

t∗ 10−9 s 4.8 7 .2 36.94 12.0 36.94
ρc g cm−3 1.04 1.04 1.04 1.04 3 .76 × 10 −3

R J g−1 K−1 4.315 4.315 4.315 4.315 4.315
κ0 107 W cm−1 K−1 3.444 7 .180 3.444 3.444 3.444
xc cm 0.192 0.339 0.532 0.304 8.852
vc 107 cm s−1 3.999 4.714 1.441 2.529 23.96
p∗ 1011 Pa 1.663 69 .33 6.482 19 .95 6.482
Tc 107 K 3.706 5.150 0.4815 1.482 133.1
ϕ∗ 1014 W cm−2 1.729 28 .0 0 .8005 4.323 13.31

Table 4. Dimensional characteristic and reference values for the original flows of configurations
i and ii of table 2, and their variants obtained from particular ablation physical parameter
variations. The physical parameter values used for distinguishing the configuration ii flows
from that of configuration i are displayed in italics.

three effects. Hence, larger front-distortion amplitudes with comparable growth phase
duration are observed for flow ii (Abéguilé et al. 2006), suggesting an overcoming of
the influence of the incident heat-flux rise (item (i) above) by that of an increased
applied external pressure (item (ii)).

This kind of assessment of laser imprinting is of practical interest to ICF target
design (e.g. see Metzler et al. 1999) and illustrates the wide variety of parametric
studies that could be carried out by means of the present self-similar ablative flow
family.

4.7. Discussion

As previously noted (§ 4.4), the present analysis of laser imprinting agrees, in
trend, with previous results on the subject whether they be based on simulations,
dedicated models or experiments. This analysis is performed for two particular
self-similar configurations representing the compressible ablative flow, by electron
heat conduction, of a semi-infinite slab of a monatomic gas initially at rest. These
configurations rely on the single temperature approximation, the Spitzer–Härm
conduction model, and assume that the critical surface of laser energy conversion
into heat flux stays sufficiently close to the flow external boundary, so that the latter
may be held to be the former, a peculiar situation in the context of ICF. The choice
of a uniform state for the fluid initially at rest leads then to a flow similarity which is
entirely determined, through a single exponent α of (2.12), by the temperature power
ν entering the nonlinear heat conductivity expression (2.2). For the Spitzer–Härm
conduction model (ν = 5/2), this similarity which is defined by α = 4/3, is bound
to absorbed laser intensities increasing linearly with time. Stability results obtained
within this particular framework are evidently restricted by these mean flow modelling
limitations and by the specificity of the particular similarity which has been retained.
Nevertheless some sufficiently general conclusions may be drawn from the present
laser imprinting analysis in the light of previous findings on the subject.

Unsteadiness. Mean flow unsteadiness has been shown to be critical to the ablation
front and flow perturbation evolutions for wavelengths ranging from being longer
to being shorter than the conduction zone size. This is made patent not only by
the dominance of the mean flow similarity at large wavelengths, but also by the
dynamics of the front distortion oscillations beyond this regime at shorter wavelengths.
Such an influential effect of the mean flow unsteadiness should be paralleled with
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Figure 10. Comparisons of dimensional front-distortion temporal responses for the different
flows in table 4 at a given laser intensity modulation wavelength λ′

⊥ = 300 μm. Effects of a
variation of (a) laser intensity pulse ramp, (b) external pressure, (c) initial fluid density, and (d )
of a conjugation of pulse ramp, external pressure and heat-conduction coefficient variations
at the critical density surface, as resulting from a pulse ramp steepening in the simulation of
a CH planar foil ablation. The thin vertical dotted lines indicate, for each flow, the times (�

for flow i, • for the flow ii variants) of shock wave penetration at a fluid depth Δ′ = 300 μm
which correspond to the front-distortion spectra shown in figure 9.

numerical simulations of realistic laser imprint configurations (Emery et al. 1991;
Velikovich et al. 1998; Goncharov et al. 2000, 2006) which have pointed out the time
dependence, often linear, of the ablation-layer characteristic length, if not the self-
similar character of the mean flow profiles (Velikovich et al. 1998), and the
approximately linear-in-time growth of long-wavelength perturbations. In fact, in
the few cases where sufficient data are available, regimes of perturbation initial
growth and early oscillations, for which the perturbation evolution characteristic time
exceeds that of the mean flow, may be identified for wavelengths sufficiently large,
but which may be smaller than the conduction zone extent. This importance of the
mean flow unsteadiness which is a feature common to both our particular flow model
and to simulations of actual ICF-pellet early-time ablation, establishes the necessity
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of a temporal approach, as performed here, in stability studies at long to moderate
wavelengths (here k⊥�con � 100). It also emphasizes the irrelevance, for these regimes,
of any stability analysis relying on quasi-steady mean flow arguments. Such an analysis
performed by Sanz et al. (2006) for weakly accelerated ablation front and which does
not suffer the restrictions of ablation front discontinuous modellings, has nevertheless
been claimed to be relevant to the early shell-irradiation stage. Therein a transition
from Darrieus–Landau unstable modes to weakly damped oscillatory modes, as the
perturbation wavelength decreases and crosses a marginal cutoff wavelength of the
order of the conduction zone thickness, is presented as possibly describing the front
distortion growth and damped oscillatory regimes found in laser imprinting. However,
this marginal cutoff wavenumber crossing is inappropriate for describing perturbation
evolutions in the unsteady early shell-irradiation flows. Indeed, as the instability
growth rate vanishes across such a cutoff wavenumber, perturbation evolution times
become much larger than the finite mean flow characteristic times, thus violating the
quasi-steady mean flow assumption this analysis relies on.

Confinement. Flow confinement appears as another determining element in the
ablation layer stability, not only, as is already known, for long wavelengths, but also
for wavelengths shorter than the shocked-fluid region: vorticity/entropy fluctuations
left out by the bounding shock wave are seen to dominate the ablation front distortion
oscillations at sufficiently short wavelengths. A similar behaviour has also been noticed
in results obtained with the early-time perturbation evolution model for quasi-steady
ablation flows (Goncharov et al. 2006, figure 8). This significant flow-confinement
effect illustrates the inadequacy of stability analyses of weakly accelerated ablation
fronts in unbounded flows for describing perturbation evolutions during the early
shell-irradiation stage.

Compressibility. An additional noticeable feature which comes out from the
present perturbation flow responses is the finite compressibility of the ablation
front perturbation evolution, as indicated by the ratios of perturbation evolution
characteristic times over acoustic transit times. This compressibility which is, at long
wavelengths, inherited from the mean-flow similarity dominance, is not becoming
sufficiently small at shorter wavelengths to be reasonably neglected. Mean flow
compressibility is also playing a particular role in the two specific configurations
which have been considered here, in that, in each case, a part of the conduction zone
expansion is supersonic. As a consequence, the thickening of the conduction zones is
sufficiently high to inhibit the growth of perturbations due to the Darrieus–Landau
instability (Landau & Lifshitz 1987). Indeed, as analysed in (Piriz & Portugues 2003)
and illustrated by simulations (e.g. see Goncharov et al. 2006, figure 19), the occurrence
of the Darrieus–Landau instability in ICF ablative flows is conditioned to a moderate
expansion of the conduction zone. Let us note that a suitable choice of the self-similar
mean flow boundary condition parameters (Bp, Bϕ) can yield a totally different picture
with respect to the conduction zone expansion (see Boudesocque-Dubois et al. 2008)
and, possibly, to the presence of Darrieus–Landau unstable modes.

Stretching. Finally, the destabilizing effect of the mean flow stretching is pointed
out as having a significant influence on the ablation front distortion dynamics. This
influence is primarily identified from the difference in the qualitative description
of the front distortion evolution between the present temporal stability results
and those of the early-time perturbation evolution model for quasi-steady ablative
flows (Goncharov et al. 2000, 2006). The latter predicts two regimes – amplitude
growth and decaying oscillations – whereas from the former, three regimes are
identified (Abéguilé et al. 2006) – amplitude growth, modulated amplitude oscillations,
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and damped oscillations. This qualitative difference is here evidenced in the specific
case of the mean flow similarity of § 2 for the similarity exponent value α = 4/3, and
the incident heat-flux perturbation (4.4) with τ =0. Arguments may be developed in
favour of a certain degree of generality regarding this mean flow stretching influence,
based on the details of our ablation-front perturbation results. We should, however,
keep in mind, when going into more detail, that the different perturbation evolution
scaling laws exhibited in the present cases must be primarily taken as particular
examples of behaviours which may occur in compressible unsteady ablative flows
of ICF. For example, a change of the incident heat-flux perturbation temporal law
would yield different time dependencies for the ablation front density perturbation
and distortion (cf. Appendix A and (A 4)).

The present analysis which does not assume any particular scaling of the
perturbation wavelength with respect to any of the flow characteristic lengths –
contrary to models based on a sharp boundary ablation layer approximation – shows
a maximum linear instability of the chosen flows at k⊥ = 0. We note that such a trend
had been previously noticed in simulations of realistic constant irradiation imprinting
configurations (Taylor et al. 1996; Nishihara et al. 1998; Schmitt et al. 2001), but
never clearly established. In the present cases, this maximum instability corresponds
to the difference between the mean flow and another similarity solution of the same
family which results from the stipulated change in the slope of the laser intensity
pulse ramp. The corresponding linear perturbations which are found to follow the
mean flow similarity, are a mere confirmation of the linear stability of the chosen
self-similar solutions with respect to one-dimensional perturbations. The fact that, for
finite wavelengths exceeding the conduction zone thickness (i.e. for 0<k⊥�con < 1), the
perturbation dynamics is dominated by the mean flow similarity, is due to the absence,
at long wavelengths, of any stronger destabilizing multidimensional mechanism for
the chosen flows (cf. the above discussion about the Darrieus–Landau instability),
rather than to a predictable consequence of the flow model limitations (§ 4.1), in
particular to the peculiar approximation of a material critical surface. The front
distortion evolution – here at leading order in t4/3 – is then inherent to this mean-flow
similarity dominance and, in its detail, to the time-depencency law for lengths – the
mean flow stretching – which characterizes the similarity. Other types of self-similar
mean flows, provided that they be linearly stable with respect to one-dimensional
perturbations, may equally display such a dominance of their linear multidimensional
perturbation dynamics by the background similarity. This could be the case of the
more realistic description of ablated ICF plasmas studied in Anisimov (1970) and
Sanmartı́n & Barrero (1978a) which does not suffer from the material critical surface
approximation of the present mean flow model.

For decreasing wavelengths ranging from being smaller than the conduction
zone size (k⊥�con > 1) to being comparable to the shocked-fluid region extent
(k⊥(�tot −�con) � 1, equivalently here k⊥�con � 250), front distortions undergo modulated
amplitude oscillations, including some further amplitude growth past the long-
wavelength growth phase. During this regime, perturbation decoupling between the
flow external boundary and the ablation front, here enhanced by the conduction
zone supersonic expansions, is effective so that the front perturbation dynamics is
at first approximation solely interfering with the nearby shock front. Constructive
or destructive perturbation interactions between the shock front and ablation layer
which may then occur, could be at the origin of the noticeable differences between
the front-distortion modulated oscillations in the present flows (see figure 8) – a fact
to be investigated in future studies. Amplitude growth which is probably here affected
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by compressibility effects, does not appear to originate from such effects: growth
is present in both configurations, whereas the respective weights of these effects
significantly differ at this stage. The occurrence of amplitude modulation and growth
as it happens here, is ruled out by the early-time perturbation model for quasi-steady
ablative flows which instead predicts decaying amplitude oscillations. Incorporating,
in a somewhat ad hoc manner, the time dependence of the ablation-layer scale
length in this model, introduces the possibility of some amplitude growth (Goncharov
et al. 2006, § III.C). This mean-flow stretching effect which is thereby taken into
account locally, is in the self-similar flow case a global effect, as summarized by
the equivalent form of (4.18) valid at any flow location. Both approaches agree,
however, in concluding that the influence of this stretching is destabilizing. Such a
destabilization, which may have important implications in experiments since flow non-
uniformities may be further amplified past the initial growth phase, induces a shift
towards smaller wavelengths at the onset of front-distortion damping as compared to
model predictions assuming a quasi-steady mean flow.

5. Conclusion
We have presented a physically and numerically consistent approach for studying

the linear stability of self-similar ablative flows found in ICF, hereby accounting for
mean flow unsteadiness, compressibility and stratification. This approach, which has
no equivalent in the field, opens the prospect for future temporal stability analyses of
a wide range of ICF ablative flows. The interest and necessity of such an approach
is demonstrated through a study of the problem of laser imprinting in ICF, i.e. the
response of a laser-driven ablative heat wave to illumination asymmetries.

The accuracy granted by the chosen numerical method has enabled us to obtain,
with unprecedented detail, laser-imprint linear responses for wavelengths much
larger than the flow extent down to wavelengths comparable to the ablation-front
characteristic length. Conclusions drawn from these results are firmly established
by the possibility of exploring such a wide perturbation spectrum and of obtaining
flow responses in terms of reduced independent variables. These responses should be
primarily viewed as particular examples of stability results which may be encountered
in unsteady compressible ablative heat waves. In the two particular cases considered
here, maximum linear instability is evidenced for illumination asymmetries of zero
transverse wavenumber, that is for a modification of the sole incident laser intensity
pulse ramp. The corresponding perturbations obeying the mean flow similarity, the
dominant instability at long wavelengths is thus ruled by the mean flow characteristics,
i.e. unsteadiness, compressibility and stretching. The existence and qualitative features
of three distinct front distortion evolution regimes – algebraic growth, modulated
amplitude oscillations and damped oscillations – as opposed to the two regimes – lin-
ear growth and damped oscillations – predicted by existing quasi-steady discontinuous
and quasi-incompressible ablation models point out the inadequacy of such restrictive
assumptions when considering the early shell-irradiation stage of an ICF pellet. This
inadequacy is patent in the identified destabilizing effect of the mean flow stretching
over a wide range of the wavenumber spectrum, and the strong influence of unstead-
iness and compressibility at long wavelengths, aspects which are absent from these
models. Another aspect covered by the present results is the existence of perturbation
interactions between the different flow regions which is supported by the accurate
description of perturbation evolutions throughout the flow. Accurate descriptions of
these interactions are most needed in ICF, in particular for testing the reliability of
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hydrodynamics code simulations. The contribution of these interactions to the flow
stability calls for a further analysis which is underway (Lombard et al. 2007).

Other mean flow or perturbation configurations could equally be treated with
the present approach. In particular, we could investigate the influence of the flow
compressibility or confinement – the latter in relation to an eventual Darrieus–
Landau instability – on the flow stability in conjunction with unsteadiness and
stratification effects. Other types of heat conduction, through proper choices of the
heat conduction coefficient exponents (μ, ν), could be treated. More specifically,
exponent values relevant to the ablation of low-atomic-number fluids by radiation
would be worth considering since the present similarity flow structure exactly matches
that of a radiation-driven ablative heat wave. In any case, given the high accuracy of
computed perturbation results, such data should be profitable for benchmarking and
improving hydrodynamics codes dedicated to ICF flow simulations.

In a broader prospect, stability results obtained with the present approach could
furnish useful guidelines for further studies, whether they be theoretical, computational
or experimental.

The authors wish to thank Professor J. Sanz (University Politécnica Madrid) for
his suggestion of a possible perturbation dependent-variable reduction.

Appendix A. Mean flow and linear perturbation reduced equations
Here, we proceed to establish the variable transformations which lead to a reduced

formulation of both (2.1), (2.2), (2.4), (2.5) for the mean flow, and (3.2a), (3.2b),
(3.2d), (3.3), (3.4), (3.5) for the linear perturbations. In doing so, we recover, for
the mean flow, the results of Brun et al. (1977) and Saillard (cf. Abéguilé et al.
2006), whereas the reduction of the linear perturbations has never been, to our
knowledge, previously established. (The different systems of independent variables and
the associated dependent variable notations used in this Appendix are summarized
in table 5.)

Let us consider a similarity transformation of the form

q −→ ΛEq q, (A 1)

where q denotes any of the 18 variables t , m, y, z, ρ̄ , v̄x , T̄ , p̄ , ϕ̄x , ρ(1), (v(1)
a )a = x,y,z,

T (1), p(1), (ϕ(1)
a )a = x,y,z, and Λ is an arbitrary constant. Requiring this transformation

to leave the set of equations (2.1), (2.2), (2.4), (2.5), (3.2a), (3.2b), (3.2d), (3.3), (3.4)
and (3.5) unchanged, imposes that the 18 exponents Et , Em, . . . , Eϕz

satisfy a system
of 15 equations whose solutions may be expressed in terms of three parameters, here
taken to be

α =
(2ν − 1) Ev̄x

− μ Eρ̄

2(ν − 1) Ev̄x
− (μ + 1) Eρ̄

, β =
(2ν − 1) Ev̄x

− (μ + 1) Eρ̄

2(ν − 1) Ev̄x
− (μ + 1) Eρ̄

, δ =
E

v
(1)
x

Ev̄x

. (A 2)

This transformation amounts then to considering the new independent variables

ξ = m t−α, η = y t−β, ζ = z t−β, (A 3)

along with dependent-variable reduced functions – say Ḡ, V̄, T̄, P̄, F̄ for the
mean flow, and G, (Va)a = x,y,z, T, P, (Fa)a = x,y,z for linear perturbations (cf. table 5)
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Arbitrary flow Linear perturbation
Mean flow Linear perturbations Fourier modes

reduced form reduced form reduced form

Independent (x, y, z, t) (m, t) ξ (m, y, z, t) (ξ, η, ζ ) (ξ, k⊥, t) (ξ, �⊥)

variables

Quantity q q̄ Q̄, Q̄ q (1) Q Q̂ Q̂
Density ρ ρ̄ Ḡ, Ḡ ρ(1) G Ĝ Ĝ
x velocity vx v̄x V̄ , V̄ v(1)

x Vx V̂x V̂x

Transverse – – – ∇⊥ · v
(1)
⊥ ∇(η,ζ ) · V⊥ D̂⊥ D̂⊥

expansion

Pressure p p̄ P̄ , P̄ p(1) P P̂ P̂
Temperature T T̄ Θ̄ , T̄ T (1) T Θ̂ T̂
x heat flux ϕx ϕ̄x Φ̄ , F̄ ϕ(1)

x Fx Φ̂x F̂x

Transverse – – – ϕ
(1)
⊥ F⊥ – –

heat flux

Surface xΓ – – x
(1)
Γ XΓ X̂Γ X̂Γ

deformation

Shock front wx w̄x W̄ , W̄ w(1)
x W ̂̇Xs Ŵ

x velocity
Shock front ux ūx Ū , Ū u(1)

x – – –
relative
x velocity

Table 5. Recapitulation of the different systems of independent variables and of the
corresponding dependent variable notations used throughout the paper.

– obeying the relations

ρ̄ (m, t) = tα−β Ḡ(ξ ), ρ(1)(m, y, z, t) = tα−β+(δ−1)(β−1) G(ξ, η, ζ ),

v̄x(m, t) = tβ−1 V̄(ξ ), v(1)
a (m, y, z, t) = t δ(β−1) Va(ξ, η, ζ ), a = x, y, z,

T̄ (m, t) = t2(β−1) T̄(ξ ), T (1)(m, y, z, t) = t (δ+1)(β−1) T(ξ, η, ζ ),

p̄(m, t) = tα−β+2(β−1) P̄(ξ ), p(1)(m, y, z, t) = tα−β+(δ+1)(β−1) P(ξ, η, ζ ),

ϕ̄x(m, t) = tα−β+3(β−1) F̄(ξ ), ϕ(1)
a (m, y, z, t) = tα−β+(δ+2)(β−1) Fa(ξ, η, ζ ),

a = x, y, z.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A 4)

Inserting (A 3) and (A 4) into (2.5) yields the system of first-order ODEs

dξ

(
αξ

Ḡ
+ V̄

)
=

β

Ḡ
,

dξ (αξV̄ − P̄) = (α + β − 1) V̄,

dξ

(
αξ

[
V̄2

2
+

T̄
γ − 1

]
− P̄V̄ − F̄

)
= [α + 2(β − 1)]

(
V̄2

2
+

T̄
γ − 1

)
,

dξ T̄ = −Ḡμ−1T̄−νF̄,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A 5)

with

P̄ = Ḡ T̄, (A 6)
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while the linear perturbation equations (3.2a), (3.2b), (3.2d), (3.3), (3.4) and (3.5) are
replaced by the system of PDEs

[(δ − 1)(β − 1) − αξ∂ξ − β∂η](G/Ḡ) + ∂ξ (ḠVx) + ∇(η,ζ ) · V⊥ = 0,

[δ(β − 1) − αξ∂ξ − β∂η]Vx + Ḡ dξ V̄ Vx + ∂ξ P − dξ P̄ G/Ḡ = 0,

[δ(β − 1) − αξ∂ξ − β∂η]∇(η,ζ ) · V⊥ + (η,ζ )P/Ḡ = 0,

[(δ + 1)(β − 1) − αξ∂ξ − β∂η]T + Ḡ dξ T̄ Vx + (γ − 1)(Ḡ dξ V̄ T
+ P̄ ∂ξ Vx + ∂ξ Fx − dξ F̄ G/Ḡ + T̄ ∇(η,ζ ) · V⊥ − ∇(η,ζ ) · F⊥/Ḡ) = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A 7)

with the notations η = ηey + ζ ez and ∂η . = η · ∇(η,ζ ) . , and with the expressions

Fx = −Ḡ1−μT̄ν
(∂ξ T + dξ T̄[(1 − μ)G/Ḡ + νT/T̄]), (A 8a)

Fy = −Ḡ−μT̄ν
∂ηT, Fz = −Ḡ−μT̄ν

∂ζ T, (A 8b)

and

P = Ḡ T + G T̄. (A 9)

In obtaining these equations, use has been made of the partial derivative
transformations

∂t q
(1)(m, y, z, t) = tn−1[n − αξ∂ξ − β∂η]Q(ξ, η, ζ ),

∂mq (1)(m, y, z, t) = tn−α∂ξ Q(ξ, η, ζ ),

∂yq
(1)(m, y, z, t) = tn−β∂ηQ(ξ, η, ζ ), ∂zq

(1)(m, y, z, t) = tn−β∂ζ Q(ξ, η, ζ ),

⎫⎪⎬⎪⎭ (A 10)

valid for any flow-dependent variable q such that q (1)(m, y, z, t) ≡ tnQ(ξ, η, ζ ).

A.1. Compatibility conditions for self-similar mean flows

The self-similar formulation (A 2)–(A 5) of the mean flow system of PDEs (2.5) is
subject to certain constraints – compatibility conditions – bearing on that system
initial and boundary conditions. Namely, compatible mean flow initial conditions
must be such that

ρ̄ (m, 0) = CI
ρ̄ mEρ̄ /Em or lim

ξ→+∞
ξ−(α−β)/α Ḡ(ξ ) = CI

ρ̄ ,

v̄x(m, 0) = CI
v̄x

mEv̄x /Em or lim
ξ→+∞

ξ−(β−1)/α V̄(ξ ) = CI
v̄x

,

T̄ (m, 0) = CI
T̄

mET̄ /Em or lim
ξ→+∞

ξ−2(β−1)/α T̄(ξ ) = CI
T̄
,

p̄(m, 0) = CI
p̄ mEp̄ /Em or lim

ξ→+∞
ξ−[α−β+2(β−1)]/α P̄(ξ ) = CI

p̄ ,

ϕ̄x(m, 0) = CI
ϕ̄x

mEϕ̄x /Em or lim
ξ→+∞

ξ−[α−β+3(β−1)]/α F̄(ξ ) = CI
ϕ̄x

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A 11)

while boundary conditions at some particular point of Lagrangian abscissa m =mΓ (t),
equivalently ξ = ξΓ =mΓ (t) t−α , ought to be of the form

q̄ (mΓ (t), t) = CΓ
q̄ tEq̄ /Et or Q̄(ξΓ ) = CΓ

q̄ . (A 12)

Let us note that the initial and boundary-conditions presently considered in this
paper (see § 2) correspond to the particular choice

Eρ̄ = 0, CI
ρ̄ = 1, CI

v̄x
= 0, CI

T̄
= 0, CI

p̄ = 0, CI
ϕ̄x

= 0, (A 13)
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in (A 11), whence the definition

α = β =
2μ − 1

2(μ − 1)
, (A 14)

and, for (A 12) taken at the origin ξ = 0, to the boundary-condition parameter and
exponent values

CΓ
p̄ = CΓ

ρ̄ CΓ
T̄

= Bp, CΓ
ϕ̄x

= Bϕ,

Ep̄/Et = Ee
p̄ = α − β + 2(β − 1) = 2(α − 1),

Eϕ̄x
/Et = Ee

ϕ̄ = α − β + 3(β − 1) = 3(α − 1),

⎫⎬⎭ (A 15)

the last two relations being imposed by (A 4). Hence, the generalized
transformation (A 2)–(A 4) reduces to the similarity transformation of § 2.2, the
corresponding reduced functions Ḡ, V̄, T̄, P̄, F̄ being merely the functions Ḡ,
V̄ , Θ̄ , P̄ , Φ̄ of (2.11)–(2.19).

A.2. Compatible initial and boundary conditions for reduced linear
perturbation equations

The facts that the reduced system (A 7) involves PDEs and that its non-trivial solutions
do not appear to be separable (Boudesocque-Dubois 2000), considerably complicate
the task of identifying linear perturbation initial conditions for (3.2a), (3.2b), (3.2d),
(3.3), (3.4) and (3.5) that could be compatible with the transformation (A 2)–(A 4).
Compatible boundary conditions are much more easily inferred. Provided that both
the imposed density ρ(1)

e and incident heat flux ϕe
(1)
x at the fluid external surface,

and the fluid quantities upstream from the shock-wave front comply with (A 4), the
boundary conditions at ξ = 0 and ξ = ξs reduce to systems of PDEs in the (ξ, η, ζ )
variables, namely,

G|+ + (Ḡdξ Ḡ)|+Xe = Ge,

Fx |+ + (Ḡdξ F̄)
∣∣
+

Xe = Fex,

Vx |+ + [(Ḡdξ V̄)|+ − δ(β − 1) − 1 + β∂η] Xe = 0,

⎫⎪⎬⎪⎭ (A 16)

at ξ = 0, and (B 6) at ξ = ξs , where, in agreement with the relation for the velocity linear
perturbation reduced function in (A 4), the boundary surface linear deformations x(1)

e

and x(1)
s satisfy the equation

x
(1)
Γ (y, z, t) = t δ(β−1)+1 XΓ (η, ζ ). (A 17)

A.3. Linear perturbation reduced Fourier mode equations

Considering the ηζ -Fourier transform of (A 7) yields a system of PDEs in the
variable (ξ, �η, �ζ ) – where �η and �ζ denote the ηζ -Fourier space variables – which
may be further simplified into a two-dimensional system of PDEs, once rewritten in
the Fourier polar coordinates (�⊥, θ) such that

�η = �⊥ cos θ, �ζ = �⊥ sin θ. (A 18)

With the notation

Ĝ(ξ, �⊥) ≡ Fηζ [G(ξ, η, ζ )], V̂x(ξ, �⊥) ≡ Fηζ [Vx(ξ, η, ζ )],

D̂⊥(ξ, �⊥) ≡ Fηζ [∇(η,ζ ) · V⊥(ξ, η, ζ )], T̂(ξ, �⊥) ≡ Fηζ [T(ξ, η, ζ )],

P̂(ξ, �⊥) ≡ Fηζ [P(ξ, η, ζ )], F̂x(ξ, �⊥) ≡ Fηζ [Fx(ξ, η, ζ )],

⎫⎪⎪⎬⎪⎪⎭ (A 19)
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for the linear perturbation reduced function Fourier transforms, the relevant system
of PDEs reads

[(δ − 1)(β − 1) − αξ∂ξ + β�](Ĝ/Ḡ) + ∂ξ (ḠV̂x) + D̂⊥ = 0,

[δ(β − 1) − αξ∂ξ + β�]V̂x + Ḡ dξ V̄ V̂x + ∂ξ P̂ − dξ P̄ Ĝ/Ḡ = 0,

[δ(β − 1) − αξ∂ξ + β�]D̂⊥ − �2
⊥P̂/Ḡ = 0,

[(δ + 1)(β − 1) − αξ∂ξ + β�]T̂ + Ḡ dξ T̄ V̂x + (γ − 1)(Ḡ dξ V̄ T̂
+ P̄ ∂ξ V̂x + ∂ξ F̂x − dξ F̄ Ĝ/Ḡ + T̄ D̂⊥ − �2

⊥Ḡ−μ−1T̄νT̂) = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A 20)

where � denotes the operator

�. = ∂�⊥(�⊥.) + 1., (A 21)

and where the expressions for F̂x and P̂ are deduced from (A 8) and (A 9) after
an obvious change of notation. The proper boundary condition formulations along
the fluid external surface ξ = 0 and the shock-wave front ξ = ξs follow immediately
from (A 16) and (B 6), in effect

Ĝ|+ + (Ḡdξ Ḡ)|+X̂e = Ĝe,

F̂x |+ + (Ḡdξ F̄)|+X̂e = F̂ex,

V̂x |+ + [(Ḡdξ V̄)|+ − δ(β − 1) − 1 − β�] X̂e = 0,

⎫⎪⎬⎪⎭ (A 22)

for the former, and (B 7) for the latter, with the convention X̂Γ (�⊥) ≡ Fηζ [XΓ (η, ζ )].
Since the Fourier polar angle θ does not explicitly appear in (A 20), (A 22) or (B 7) –

whence justifying the notations of (A 19) – system (A 20) need only be considered for
(ξ, �⊥) in [0, ξs) × [0, +∞). Differences between solutions to this system for different
angles θ may thus result only from differences in boundary values imposed at the flow
boundaries ξ = 0 and ξ = ξ+

s , or along the wavenumber domain boundaries �⊥ = 0
and �⊥ → +∞. Let us note, however, that (A 20) depends on the free parameter δ

which determines the linear perturbation time power-laws that may be imposed
along the flow boundaries. Further characterization of the mathematical properties
of this system in terms of boundary condition specifications, existence or methods
of solutions is beyond the scope of this paper. Nevertheless, the possibility of a
linear perturbation description in terms of a reduced set of independent variables, as
described by (A 4), (A 19), (A 20), can turn out to be especially valuable when analysing
numerical integration results of the temporal PDE system (3.10). In particular we
may take advantage of the relation which exists between the yz- and ηζ -Fourier
transforms of a given flow variable linear perturbation q (1), namely

Q̂(ξ, k⊥, t) = tn+2β Q̂(ξ, tβk⊥), (A 23)

provided that q (1) is such that q (1)(m, y, z, t) = tn Q(ξ, η, ζ ).
Note that the reduced Fourier transform equations and relation relevant to the

self-similar flows of § 2.2, namely (3.18) and (3.19), simply arise as the particular case
of (A 20) and (A 23) when (A 14) applies.

Appendix B. Rankine–Hugoniot relations at the shock-wave front
Linearly perturbed Rankine–Hugoniot relations have been derived in many

instances (e.g. see Richtmyer 1960), although, most often in the absence of a heat flux
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and assuming uniform mean flows on both sides of the discontinuity. Here, having in
mind the one-dimensional flows of § 2.2, we shall assume only that the upstream heat
flux is vanishing and that the shock-front surface distortion comes as

x = xs(y, z, t; ε),

with the notation of § 3. The general form of the Rankine–Hugoniot jump relations
at a shock-wave front, in the presence of a heat flux ϕ and in the absence of mass
forces, may be written as (e.g. see Germain & Muller 1994)

[ρuana]
U
D = 0,

[(ρvaub − pδab)nb]
U
D = 0, for a = x, y, z,[(

ρ
[
E + 1

2
vbvb

]
ua − pva − ϕa

)
na

]U

D
= 0,

⎫⎬⎭ (B 1)

where n is the vector normal to the shock-wave front surface, and u = w − v is the
shock front velocity relative to the fluid, w being the front velocity in the chosen frame
of reference. In addition, downstream (respectively upstream) – with respect to the
shock front – values of flow quantities are designated by the subscript D (subscript
U ), while subscripts a and b identify vector components in the Cartesian coordinate
system, and δab is the usual Kronecker symbol – Einstein’s convention being used for
repeated subscripts.

B.1. Mean flow Rankine–Hugoniot relations in the self-similar variable

Applying (B 1) to the one-dimensional self-similar flows of § 2.2, i.e. for an
upstream state given by (ḠU , V̄ U , Θ̄U ) = (1, 0, 0), and assuming a discontinuity of
the temperature, leads to the expressions

ḠD =
(γ + 1)W̄

2

γ W̄
2 − R

, V̄ D =
W̄

2
+ R

W̄ (γ + 1)
, P̄ D = W̄ V̄ D, (B 2)

with

R =

√
W̄ 4 − 2(γ − 1)(γ + 1)W̄ Φ̄D,

where W̄ is the self-similar shock-front reduced velocity, of expression

W̄ ≡ t1−α [∂t x̄ (m, t)]ξ |
ξs

= [αξ/Ḡ(ξ ) + V̄ (ξ )]|ξs
. (B 3)

B.2. Linear perturbation Rankine–Hugoniot relations

The corresponding jump relations for the linear perturbations – expressed in terms of
the transverse flow expansion, ∇⊥ · v

(1)
⊥ , and the Lagrangian coordinate m – come as[

ρ(1)ūx + ρ̄u(1)
x + ρ̄x(1)

s ∂m(ρ̄ ūx)
]U

D
= 0,[

ρ̄ v̄xu
(1)
x + ρ̄v(1)

x ūx + ρ(1)v̄x ūx − p(1) + ρ̄x(1)
s ∂m(ρ̄ v̄x ūx − p̄)

]U

D
= 0,[

∇⊥ · v
(1)
⊥ + v̄x⊥x(1)

s

]U

D
= 0,[(

p(1)

γ − 1
+ ρ(1) v̄

2
x

2
+ ρ̄ v̄xv

(1)
x

)
ūx +

(
p̄

γ − 1
+ ρ̄

v̄2
x

2

)
u(1)

x − p̄v(1)
x − p(1)v̄x

+ ρ̄x(1)
s ∂m

([
p̄

γ − 1
+ ρ̄

v̄2
x

2

]
ūx − p̄v̄x

)]U

D

+ ϕ(1)
x D + ρ̄Dx(1)

s (∂mϕ̄x)D = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(B 4)

with u(1)
x = w(1)

x − v(1)
x = ẋ(1)

s − v(1)
x , and the notation introduced in (3.2)–(3.8). These

relations cover the classical case (Richtmyer 1960) of uniform downstream and
upstream mean flows in the absence of heat conduction.
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B.2.1. Fourier mode Rankine–Hugoniot relations

For a uniform upstream mean flow, as is the case for the self-similar flows of
§ 2, the jump relations for the linear perturbation yz-Fourier component vector

Ẑ =(Ĝ, V̂x, D̂⊥, P̂ )� in the variable (ξ, k⊥, t) which are derived from (B 4) may be
recast as the system of temporal ODEs

MD ẐD = MU ẐU + ̂̇Xs S1 + X̂s S0 + Φ̂xD E4, (B 5)

with X̂s(k⊥, t) ≡ Fyz[x
(1)
s (y, z, t)]. In this formulation, E4 is the unit vector (0, 0, 0, 1)�,

the matrices MU and MD are deduced from the expressions

M =

⎛⎜⎜⎝
tα−1M11 M12 0 0

t2α−2M21 tα−1M22 0 −1

0 0 1 0
t3α−3M41 t2α−2M42 0 tα−1M44

⎞⎟⎟⎠ ,

with

M11 = Ū , M12 = −Ḡ, M21 = Ū V̄ , M22 = Ḡ(Ū − V̄ ), M41 = Ū V̄ 2/2,

M42 = ḠV̄
(
Ū − V̄ /2

)
− γ P̄ /(γ − 1), M44 = (W̄ − γ V̄ )/(γ − 1),

while the vectors S0 and S1 read

S0 = −

⎛⎜⎜⎜⎜⎝
t−1ḠDdξ (ḠŪ )|D

tα−2ḠDdξ (ḠV̄ Ū − P̄ )|D
tα−1k2

⊥[V̄ ]UD

t2α−3ḠDdξ [
(
P̄ /(γ − 1) + ḠV̄ 2/2

)
Ū − P̄ V̄ − Φ̄ ]|D

⎞⎟⎟⎟⎟⎠ ,

S1 =

⎛⎜⎜⎝
[Ḡ]UD

tα−1[ḠV̄ ]UD
0

t2α−2[P̄ /(γ − 1) + ḠV̄ 2/2]UD

⎞⎟⎟⎠ .

B.2.2. Reduced linear perturbation Rankine–Hugoniot relations

The Rankine–Hugoniot jump relations for the linear perturbation reduced functions
come readily from substituting (A 4), for both upstream and downstream flow
quantities, into (B 4). Under the same assumption of a uniform upstream mean
flow, we then obtain the equivalent of (B 5) under the form of the system of PDEs in
the variable (η, ζ )

NDZD − FxD E4 + Xs S0 − W S1 − (η,ζ )Xs S2 = NU ZU , (B 6)

with Z = (G, Vx, ∇(η,ζ ) · V⊥, P)�, and where

W = [δ(β − 1) + 1 − β∂η] Xs,

represents the reduced shock-front deformation velocity whose expression is deduced
from the boundary deformation relation (A 17). The matrices NU and ND follow from
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the definitions

N =

⎛⎜⎜⎝
N11 N12 0 0

N21 N22 0 −1

0 0 1 0
N41 N42 0 N44

⎞⎟⎟⎠ ,

with

N11 = Ū, N12 = −Ḡ, N21 = ŪV̄, N22 = Ḡ(Ū − V̄), N41 = ŪV̄2/2,

N42 = ḠV̄(Ū − V̄/2) − γ P̄/(γ − 1), N44 = (W̄ − γ V̄)/(γ − 1),

while the vectors S0, S1 and S2 are given by

S0 =

⎛⎜⎜⎜⎝
ḠDdξ (ḠŪ)|D

ḠDdξ (ḠV̄Ū − P̄)|D
0

ḠDdξ [(P̄/(γ − 1) + ḠV̄2/2)Ū − P̄V̄ − F̄]|D

⎞⎟⎟⎟⎠ ,

S1 =

⎛⎜⎜⎜⎝
[Ḡ]UD

[ḠV̄]UD
0

[P̄/(γ − 1) + ḠV̄2/2]UD

⎞⎟⎟⎟⎠ , S2 =

⎛⎜⎜⎝
0

0

[V̄]UD
0

⎞⎟⎟⎠ .

B.2.3. Reduced Fourier mode Rankine–Hugoniot relations

Considering the ηζ -Fourier transform of (B 6) immediately yields the linear
perturbation reduced Fourier mode jump relations, namely the system of ODEs
in the wavenumber variable �⊥

NDẐD − F̂xD E4 + X̂s(S0 − [δ(β − 1) + 1]S1 + �2
⊥ S2) − β�X̂s S1 = NU ẐU,

(B 7)

with the notation Ẑ =(Ĝ, V̂x, D̂⊥, P̂)�, and where � is the operator introduced
in (A 21).
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